DOI QR코드

DOI QR Code

Optimized data processing for ground motions of bridge earthquake response based on improved VMD

  • Received : 2024.06.30
  • Accepted : 2024.08.26
  • Published : 2024.11.25

Abstract

The safety and stability of bridges are critical to traffic safety. However, post-earthquake ground motion records often contain noise, which undermines the accuracy of seismic response analysis in bridge structures. To tackle this issue, we introduce a method that optimizes Variational Mode Decomposition (VMD) parameters using the Sparrow Search Algorithm (SSA) and combines it with Wavelet Thresholding (WT) to eliminate noise from strong motion signals. SSA is employed to identify the optimal VMD parameters [K, α], followed by the selection of effective modes based on the Variance Contribution Rate (VCR). These modes are then subjected to WT noise reduction, resulting in a high-quality reconstructed strong motion record. The method was validated using both simulated signals and ground motion records. In simulations, it demonstrated a 31.35% reduction in Root Mean Square Error (RMSE), a 31.6% decrease in the Smoothness Indicator (R), and a 1.17% improvement in the Correlation Coefficient (CC), compared to other methods. For ground motion records, it more accurately preserved seismic features than traditional wavelet denoising. When applied to the seismic response analysis of the Dahejia Bridge during the Jishishan earthquake, the denoised ground motion records obtained by this method produced force predictions on pier bearings that closely matched the field-observed damage, outperforming predictions based on traditional wavelet denoising. These findings confirm the accuracy and practicality of the proposed method.

Keywords

Acknowledgement

The research described in this paper was financially supported by Gansu Province Key Talent Project 2024, Lanzhou Institute of Technology Youth Science and Technology Innovation Project (2024KJ-06), Gansu Provincial Education Science and Technology Innovation Industry Support Plan Project (2021CYZC-35), Lanzhou Institute of Technology Youth Science and Technology Innovation Project (2024KJ-30).

References

  1. Ansari, A., Noorzad, A., Zafarani, H. and Vahidifard, H. (2010), "Correction of highly noisy strong motion records using a modified wavelet de-noising method", Soil Dyn. Earthq. Eng., 30(11), 1168-1181. https://doi.org/10.1016/j.soildyn.2010.04.025.
  2. Banjade, T.P., Yu, S. and Ma, J. (2019), "Earthquake accelerogram denoising by wavelet-based variational mode decomposition", J. Seismol., 23, 649-663. https://doi.org/10.1007/s10950-019-09827-0.
  3. Bastias, N. and Montalva, G.A. (2016), "Chile strong ground motion flatfile", Earthq. Spectra, 32(4), 2549-2566. https://doi.org/10.1193/102715EQS158DP.
  4. Boyd, S., Parikh, N., Chu, E., Peleato, B. and Eckstein, J. (2011), "Distributed optimization and statistical learning via the alternating direction method of multipliers", Found. Trends Mach. Learn., 3(1), 1-122. http://doi.org/10.1561/2200000016.
  5. Chiou, B., Darragh, R., Gregor, N. and Silva, W. (2008), "Nga project strong-motion database", Earthq. Spectra, 24(1), 23-44. https://doi.org/10.1193/1.2894831.
  6. Dragomiretskiy K. and Zosso D. (2014), "Variational mode decomposition", IEEE Trans. Signal Pr., 62(3), 531-544. https://doi.org/10.1109/TSP.2013.2288675.
  7. Feng, J., Zhao, B. and Zhao, T. (2021), "Quantitative identification of near-fault pulse-like ground motions based on variational mode decomposition technique", Soil Dyn. Earthq. Eng., 151, 107009. https://doi.org/10.1016/j.soildyn.2021.107009.
  8. Gao, L., Zhuang, M.L., Zhang, Q., Bao, G., Yu, X., Du, J., Zhou, S. and Wang, M. (2024), "Displacement and internal force response of mechanically connected precast piles subjected to horizontal load based on the m-method", Build., 14(7), 1943. https://doi.org/10.3390/buildings14071943.
  9. Gao, Q., Li, Z., Monti, G. and Chang, Z. (2024), "Truncating ground motions using the VMD-Hilbert transform for nonlinear dynamic analyses", Struct., 63, 106393. https://doi.org/10.1016/j.istruc.2024.106393.
  10. Gomez, J.L. and Velis, D.R. (2016), "A simple method inspired by empirical mode decomposition for denoising seismic data", Geophys., 81(6), 403-413. https://doi.org/10.1190/geo2015-0566.1.
  11. Jacob, M. (2022), "Modal analysis of an RCC long span arch bridge using midas Civil -A validation", Mater. Today, 57, 460-463. https://doi.org/10.1016/j.matpr.2022.01.185.
  12. Jaramillo, J., Diaz, M., Zavala, C., Kusunoki, K., Inocente, I. and Otero, D. (2023), "Wavelet transform method for the evaluation of the seismic response of one isolated building in the Lima metropolitan area", J. Disaster Res., 18(4), 338-349. https://doi.org/10.20965/jdr.2023.p0338.
  13. Javdanian, H. and Goudarzi, N. (2023), "Seismic analysis of geogrid-reinforced soil retaining walls under decomposed earthquake records", Iran. J. Sci. Technol. Trans. Civil Eng., 47(4), 2365-2377. https://doi.org/10.1007/s40996-023-01070-5.
  14. Jiao, C., Li, J., Wei, B., Long, P. and Xu, Y. (2019), "Experimental investigations on seismic responses of RC circular column piers in curved bridges", Earthq. Struct., 17(5), 435-445. https://doi.org/10.12989/eas.2019.17.5.435.
  15. JTG 3363-2019 (2019), Specifications for Design of Foundation of Highway Bridges and Culverts, People's Transportation Press, Beijing, China.
  16. Karalar, M. and Cufali, G. (2023), "Structural assessment of historical stone bridges with the finite element method under dynamic effects of arch shape: The Antik Iscehisar bridge", Appl. Sci., 13(19), 10740. https://doi.org/10.3390/app131910740.
  17. Karalar, M. and Yesil, M. (2021a), "Investigation on seismic behavior of historical Tokatli bridge under near-fault earthquakes", Adv. Civil Eng., 2021(1), 5596760. https://doi.org/10.1155/2021/5596760.
  18. Karalar, M. and Yesil, M. (2021b), "Effect of near-fault earthquakes on a historical masonry arch bridge (Konjic Bridge)", Earthq. Struct., 21(2), 125-136. https://doi.org/10.12989/eas.2021.21.2.125.
  19. Karalar, M. and Yesil, M. (2022), "Examination of masonry arch bridge's life-cycle assessment under far-fault earthquakes", Gradevinar, 74(7), 587-598. https://doi.org/10.14256/JCE.3027.2020.
  20. Karalar, M. and Yesil, M. (2023a), "Structural investigation of a historical masonry arch bridge under far-fault earthquakes", Tehnicki vjesnik, 30(5), 1443-1450. https://doi.org/10.17559/tv20220711123816.
  21. Karalar, M. and Yesil, M. (2023b), "Implications of arch warp altitudes on an ancient masonry bridge under ground movements", Appl. Sci., 13(13), 7395. https://doi.org/10.3390/app13137395.
  22. Kennedy, J. and Eberhart, R. (1995), "Particle swarm optimization", Proceedings of ICNN'95 - International Conference on Neural Networks, Perth, WA, Australia, November-December.
  23. Li, Y., Luo, Y., Wan, H.P., Yun, C.B. and Shen, Y. (2020), "Identification of earthquake ground motion based on limited acceleration measurements of structure using Kalman filtering technique", Struct. Control Health Monit., 27(1), e2464. https://doi.org/10.1002/stc.2464.
  24. Liu, W., Cao, S. and Chen, Y. (2016), "Applications of variational mode decomposition in seismic time-frequency analysis", Geophys., 81(5), 365-378. https://doi.org/10.1190/geo2015-0489.1.
  25. Naderi, M. and Zekavati, M. (2018), "Assessment of seismic behavior stone bridge using a finite element method and discrete element method", Earthq. Struct., 14(4), 297-303. https://doi.org/10.12989/eas.2018.14.4.297.
  26. Nasiri, F., Javdanian, H. and Heidari, A. (2020), "Seismic response analysis of embankment dams under decomposed earthquakes", Geomech. Eng., 21(1), 35-51. https://doi.org/10.12989/gae.2020.21.1.035.
  27. Ni, Y.Q., Zhang, F.L., Xia, Y.X. and Au, S.K. (2015), "Operational modal analysis of a long-span suspension bridge under different earthquake events", Earthq. Struct., 8(4), 859-887. https://doi.org/10.12989/eas.2015.8.4.859.
  28. Ouyang, C., Cai, L., Liu, B. and Zhang, T. (2023), "An improved wavelet threshold denoising approach for surface electromyography signal", EURASIP J. Adv. Signal Pr., 2023(1), 108. https://doi.org/10.1186/s13634-023-01066-3.
  29. Raghukanth, S.T.G. and Sangeetha, S. (2012), "Empirical mode decomposition of earthquake accelerograms", Adv. Adapt. Data Anal., 4(4), 1250022. https://doi.org/10.1142/S1793536912500227.
  30. Ren, W.X. and De Roeck, G. (2002), "Structural damage identification using modal data I: Simulation verification", J. Struct. Eng., 128(1), 87-95. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:1(87).
  31. To, A.C., Moore, J.R. and Glaser, S.D. (2009), "Wavelet denoising techniques with applications to experimental geophysical data", Signal Pr., 89(2), 144-160. https://doi.org/10.1016/j.sigpro.2008.07.023.
  32. Valencia, D., Orejuela, D., Salazar, J. and Valencia, J. (2016), "Comparison analysis between rigrsure, sqtwolog, heursure and mini maxi techniques using hard and soft thresholding methods", 2016 XXI Symposium on Signal Processing, Images and Artificial Vision (STSIVA), Bucaramanga, Colombia, August-September.
  33. Variyavwala, J.P. and Desai, A.K. (2023), "Evaluation of train running safety on railway cable-stayed bridge during seismic excitation", Int. J. Struct. Stab. Dyn., 23(6), 2350066. https://doi.org/10.1142/S0219455423500669.
  34. Xu, L. and Zhou, Z. (2022), "Impact of target spectra variance of selected ground motions on seismic response of structures", Earthq. Struct., 23(2), 115-128. https://doi.org/10.12989/eas.2022.23.2.115.
  35. Xue, J. and Shen, B. (2020), "A novel swarm intelligence optimization approach: Sparrow search algorithm", Syst. Sci. Control Eng., 8(1), 22-34. https://doi.org/10.1080/21642583.2019.1708830.
  36. Xue, Y.J., Cao, J.X., Wang, X.J. and and Du, H.K. (2020), "Estimation of seismic quality factor in the time-frequency domain using variational mode decomposition", Geophys., 85(4), 329-343. https://doi.org/10.1190/geo2019-0404.1.
  37. Yang, X.S. and Hossein Gandomi, A. (2012), "Bat algorithm: A novel approach for global engineering optimization", Eng. Comput., 29(5), 464-483. https://doi.org/10.1108/02644401211235834.
  38. Yao, X.X., Ren, Y.F., Tadahiro, K., Wen, R.Z., Wang, H.W. and Ji, K. (2022), "The procedure of filtering the strong motion record: Denosing and filtering", Earthq. Mech., 39(S), 320-329. https://doi.org/10.6052/j.issn.1000-4750.2021.05.S058.
  39. Yinfeng, D., Yingmin, L., Mingkui, X. and Ming, L. (2008), "Analysis of earthquake ground motions using an improved Hilbert-Huang transform", Soil Dyn. Earthq. Eng., 28(1), 7-19. https://doi.org/10.1016/j.soildyn.2007.05.002.
  40. Zhang, Y., Nie, Z., Wang, Z., Zhang, G. and Shan, X. (2024), "Integration of high-rate GNSS and strong motion record based on Sage-Husa Kalman filter with adaptive estimation of strong motion acceleration noise uncertainty", Remote Sens., 16(11), 2000. https://doi.org/10.3390/rs16112000.