Acknowledgement
The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by the Dean (Research & Consultancy), SVNIT Surat under Grant No. Dean (R&C)/2020-21/1155.
References
- Amini, F. and Tavassoli, M.R. (2005), "Optimal structural active control force, number and placement of controllers", Eng. Struct., 27(9), 1306-1316. https://doi.org/10.1016/j.engstruct.2005.01.006.
- Baygi, S.M.H. and Karsaz, A. (2018), "A hybrid optimal PIDLQR control of structural system: A case study of salp swarm optimization", 2018 3rd Conference on Swarm Intelligence and Evolutionary Computation (CSIEC), Bam, Iran, March.
- Bekdas, G. and Nigdeli, S.M. (2011), "Estimating optimum parameters of tuned mass dampers using harmony search", Eng. Struct., 33(9), 2716-2723. https://doi.org/10.1016/j.engstruct.2011.05.024.
- Bhaiya, V., Bharti, S.D., Shrimali, M.K. and Datta, T.K. (2016), "Effect of noises on the active optimal control of partially observed structures for white random ground motion", Noise Control Eng. J., 64(6), 789-799. https://doi.org/10.3397/1/376420.
- Bhardwaj, A., Matsagar, V. and Nagpal, A. (2016), "Energy balance assessment of tall buildings equipped with friction dampers for earthquake response control", J. Struct. Eng. Struct. Eng. Res. Center (SERC), 43(1), 91-101.
- Bigdeli, A., Rahman, M. and Kim, D. (2023), "Vibration control of low-rise buildings considering nonlinear behavior of concrete using tuned mass damper", Struct. Eng. Mech., 88(3), 209-220. https://doi.org/10.12989/sem.2023.88.3.209.
- Bonabeau, E., Dorigo, M. and Theraulaz, G. (1999), Swarm Intelligence: From Natural to Artificial Systems, Oxford University Press, Oxford, UK.
- Cao, A.T., Nahar, T.T., Kim, D. and Choi, B. (2019), "Earthquake risk assessment of concrete gravity dam by cumulative absolute velocity and response surface methodology", Earthq. Struct., 17(5), 511-519. https://doi.org/10.12989/eas.2019.17.5.511.
- Cha, Y.J., Kim, Y., Raich, A.M. and Agrawal, A.K. (2013), "Multi-objective optimization for actuator and sensor layouts of actively controlled 3D buildings", J. Vib. Control, 19(6), 942-960. https://doi.org/10.1177/1077546311430105.
- Chacko, S.J., Neeraj, P.C. and Abraham, R.J. (2024), "Optimizing LQR controllers: A comparative study", Results Control Opt., 14(2), 100387. https://doi.org/10.1016/j.rico.2024.100387.
- Debnath, P.P. and Choudhury, S. (2017), "Nonlinear analysis of shear wall in unified performance based seismic design of buildings", Asian J. Civil Eng., 18(4), 633-642.
- Dehghani, M., Trojovska, E. and Trojovsky, P. (2022), "A new human-based metaheuristic algorithm for solving optimization problems on the base of simulation of driving training process", Sci.ic Rep., 12(1), 9924. https://doi.org/10.1038/s41598-022-14225-7.
- Desale, S.A., Rasool, A., Andhale, S. and Rane, P.V. (2015), "Heuristic and meta-heuristic algorithms and their relevance to the real world: A survey", Int. J. Comput. Eng. Res. Trends, 2(5), 296-304.
- Eberhart, R. and Kennedy, J. (1995), "New optimizer using particle swarm theory", Proceedings of the International Symposium on Micro Machine and Human Science, Nagoya, Japan, October.
- Farzam, M.F., Jalali, H.H., Gavgani, S.A.M., Kayabekir, A.E. and Bekdas, G. (2021), "Current trends in the optimization approaches for optimal structural control", Advances in Structural Engineering-Optimization. Studies in Systems, Decision and Control, Springer International Publishing, Cham, Switzerland.
- FEMA (2009), P-695: Quantification of Building Seismic Performance Factors, US Department of Homeland Security, Federal Emergency Management Agency, Washington, D.C., USA.
- Gad, A.G. (2022), "Particle swarm optimization algorithm and its applications: A systematic review", Arch. Comput. Methods Eng., 29(5), 2531-2561 https://doi.org/10.1007/s11831-021-09694-4.
- George, N.V. and Panda, G. (2012), "A particle-swarm-optimization-based decentralized nonlinear active noise control system", IEEE Trans. Instrument. Measure., 61(12), 3378-3386. https://doi.org/10.1109/TIM.2012.2205492.
- Ghasemof, A., Mirtaheri, M., Mohammadi, R.K. and Salkhordeh, M. (2022), "A multi-objective optimization framework for optimally designing steel moment frame structures under multiple seismic excitations", Earthq. Struct., 23(1), 35-57. https://doi.org/10.12989/eas.2022.23.1.035.
- Goldberg, D.E. and Holland, J.H. (1988), "Genetic algorithms and machine learning", Mach. Learn., 3(2), 95-99. https://doi.org/10.1023/A:1022602019183.
- Heidari, A.H., Etedali, S. and Javaheri-Tafti, M.R. (2018), "A hybrid LQR-PID control design for seismic control of buildings equipped with ATMD", Front. Struct. Civil Eng., 12(1), 44-57. https://doi.org/10.1007/s11709-016-0382-6.
- Holland, J.H. (1992), "Genetic algorithms", Sci. Am., 267(1), 66-73.
- Hou, Y., Gao, H., Wang, Z. and Du, C. (2022), "Improved grey wolf optimization algorithm and application", Sensors, 22(10), 1-19. https://doi.org/10.3390/s22103810.
- Huang, J., Chong, X., Jiang, Q., Ye, X.G. and Wang, H. (2018), "Seismic response reduction of megaframe with vibration control substructure", Shock Vib., 2018, 1-14. https://doi.org/10.1155/2018/9427908.
- Ibidapo-Obe, O. (1985), "Optimal actuators placements for the active control of flexible structures", J. Math. Anal. Appl., 105(1), 12-25. https://doi.org/10.1016/0022-247X(85)90094-0.
- Irakoze, J.P., Li, S., Pu, W., Nyangi, P. and Sibomana, A. (2023), "Optimization of base-isolated structure with negative stiffness tuned inerter damper targeting seismic response reduction", Earthq. Struct., 25(6), 399-415. https://doi.org/10.12989/eas.2023.25.6.399.
- IS 1893 (Part-1) (2016), Criteria for Earthquake Resistant Design of Structures: Part 1 General Provisions and Buildings, Bureau of Indian Standard, New Delhi, India.
- Jiang, Q., Lu, X.Z., Chong, X., Ye, X.G. and Huang, J.Q. (2015), "Damping effect analysis of mega-frame structures with a vibration absorption substructure", Eng. Mech., 32(6), 39-44. https://doi.org/10.6052/j.issn.1000-4750.2014.05.S048.
- Katebi, J., Shoaei-parchin, M., Shariati, M., Trung, N.T. and Khorami, M. (2020), "Developed comparative analysis of metaheuristic optimization algorithms for optimal active control of structures", Eng. Comput., 36(4), 1539-1558. https://doi.org/10.1007/s00366-019-00780-7.
- Katoch, S., Chauhan, S.S. and Kumar, V. (2021), "A review on genetic algorithm: Past, present, and future", Multimedia Tools Appl., 80(5), 8091-8126. https://doi.org/10.1007/s11042-020-10139-6.
- Kaveh, A. (2017), "Applications of metaheuristic optimization algorithms in civil engineering", Applications of Metaheuristic Optimization Algorithms in Civil Engineering, Springer International Publishing, Cham, Switzerland.
- Kaveh, A. and Ghazaan, M.I. (2018). "Meta-heuristic algorithms for optimal design of real-size structures", Meta-Heuristic Algorithms for Optimal Design of Real-Size Structures, Springer International Publishing, Cham, Switzerland.
- Kayabekir, A.E., Nigdeli, S.M. and Bekdas, G. (2022), "A hybrid metaheuristic method for optimization of active tuned mass dampers", Compu. Aid. Civil Infrastr. Eng., 37(8), 1027-1043. https://doi.org/10.1111/mice.12790.
- Kennedy, J. and Eberhart, R. (1995), "Particle swarm optimization", Int. Conf. Neural Netw., 4, 1942-1948. https://doi.org/10.1007/978-3-031-17922-8_4.
- Kirkpatrick, S., Gelatt, C.D. and Vecchi, M.P. (1983), "Optimization by simulated annealing", Sci., 220(4598), 671-680. https://doi.org/10.1126/science.220.4598.671.
- Liang, X. and Zhang, Z. (2022), "A whale optimization algorithm with convergence and exploitability enhancement and its application", Math. Probl. Eng., 2022(1), 2904625. https://doi.org/10.1155/2022/2904625.
- Lin, X. and Lin, W. (2022), "Whale optimization algorithm-based LQG-adaptive neuro-fuzzy control for seismic vibration mitigation with MR dampers", Shock Vib., 2022, 1-21. https://doi.org/10.1155/2022/4060660.
- Liu, Y.L., Kumar, S., Wang, D.H. and Guo, D. (2024), "Effect of vertical reinforcement connection level on seismic behavior of precast RC shear walls: Experimental study", Earthq. Struct., 26(6), 449-461. https://doi.org/https://doi.org/10.12989/eas.2024.26.6.449.
- Lu, X., Liao, W., Huang, W., Xu, Y. and Chen, X. (2021), "An improved linear quadratic regulator control method through convolutional neural network-based vibration identification", J. Vib. Control, 27(7-8), 839-853. https://doi.org/10.1177/1077546320933756.
- Mafarja, M.M. and Mirjalili, S. (2017), "Hybrid whale optimization algorithm with simulated annealing for feature selection", Neurocomput., 260, 302-312. https://doi.org/10.1016/j.neucom.2017.04.053.
- MATLAB and Statistics Toolbox Release (2014), MATLAB and Statistics Toolbox Release, The MathWorks, Inc., Natick, MA, USA.
- Mehta, N.S., Bhaiya, V., Patel, K.A. and Farsangi, E.N. (2024), "Predictive active control of building structures using LQR and artificial intelligence", Earthq. Eng. Eng. Vib., 23(2), 489-502. https://doi.org/10.1007/s11803-024-2250-z.
- Mehta, N.S. and Mevada, S.V. (2017), "Seismic response of two-way asymmetric building installed with hybrid arrangement of dampers under bi-directional excitations", Int. J. Struct. Eng., 8(3), 249-271. https://doi.org/10.1504/IJSTRUCTE.2017.086421.
- Mehta, N.S., Mevada, S.V., Patel, K.A. and Bhaiya, V. (2022), "Seismic response of two-way asymmetric building with semi-active stiffness damper under bi-directional excitations", ASPS Conf. Proc., 1(1), 849-855. https://doi.org/10.38208/acp.v1.593.
- Mirjalili, S. (2019a), "Evolutionary algorithms and neural networks", Stud. Comput. Intell., 780, 1-159. https://doi.org/10.1007/978-3-319-93025-1.
- Mirjalili, S. (2019b), "Genetic algorithm", Evolutionary Algorithms and Neural Networks: Theory and Applications, Springer International Publishing, Cham, Switzerland.
- Mirjalili, S. (2019c), "Particle swarm optimisation", Evolutionary Algorithms and Neural Networks, Springer International Publishing, Cham, Switzerland.
- Mirjalili, S. and Hashim, S.Z.M. (2010), "A new hybrid PSOGSA algorithm for function optimization", Proc. ICCIA 2010 - 2010 Int. Conf. Comput. Informat. Appl., 1, 374-377. https://doi.org/10.1109/ICCIA.2010.6141614.
- Mirjalili, S. and Lewis, A. (2016), "The whale optimization algorithm", Adv. Eng. Softw., 95, 51-67. https://doi.org/10.1016/j.advengsoft.2016.01.008.
- Mirjalili, S., Lewis, A. and Sadiq, A.S. (2014), "Autonomous Particles groups for particle swarm optimization", Arab. J. Sci. Eng., 39(6), 4683-4697. https://doi.org/10.1007/s13369-014-1156-x.
- Mirjalili, S., Mirjalili, S.M. and Lewis, A. (2014), "Grey wolf optimizer", Adv. Eng. Softw., 69, 46-61. https://doi.org/10.1016/j.advengsoft.2013.12.007.
- Mirjalili, S., Saremi, S., Mirjalili, S.M. and Coelho, L.D.S. (2016), "Multi-objective grey wolf optimizer: A novel algorithm for multi-criterion optimization", Expert Syst. Appl., 47, 106-119. https://doi.org/10.1016/j.eswa.2015.10.039.
- Miyamoto, K., She, J., Sato, D. and Yasuo, N. (2018), "Automatic determination of LQR weighting matrices for active structural control", Eng. Struct., 174, 308-321. https://doi.org/10.1016/j.engstruct.2018.07.009.
- Moghaddasie, B. and Jalaeefar, A. (2019), "Optimization of LQR method for the active control of seismically excited structures", Smart Struct. Syst., 23(3), 243-261. https://doi.org/10.12989/sss.2019.23.3.243.
- Niharika, T., Said, E. and Vasant, M. (2021), "Earthquake response control of isolated bridges using supplementary passive dampers", Pract. Period. Struct. Des. Constr., 26(2), 4021002. https://doi.org/10.1061/(ASCE)SC.1943-5576.0000563.
- Pourzeynali, S., Lavasani, H.H. and Modarayi, A.H. (2007), "Active control of high rise building structures using fuzzy logic and genetic algorithms", Eng. Struct., 29(3), 346-357. https://doi.org/10.1016/j.engstruct.2006.04.015.
- Pourzeynali, S. and Mousanejad, T. (2010), "Optimization of semi-active control of seismically excited buildings using genetic algorithms", Sci. Iran., 17(1), 26-38.
- Pourzeynali, S., Salimi, S. and Kalesar, H.E. (2013), "Robust multi-objective optimization design of TMD control device to reduce tall building responses against earthquake excitations using genetic algorithms", Sci. Iran., 20(2), 207-221. https://doi.org/10.1016/j.scient.2012.11.015.
- Schmidt, A. and Lewandowski, R. (2010), "The design of an active seismic control system for a building using the particle swarm optimization", Artifical Intelligence and Soft Computing: 10th International Conference, ICAISC 2010, Zakopane, Poland, June.
- Soong, T.T., Masri, S.F. and Housner, G.W. (1991), "An overview of active structural control under seismic loads", Earthq. Spectra, 7(3), 483-505. https://doi.org/10.1193/1.1585638.
- Talyan, N. and Ramancharla, P.K. (2024), "Strengthening sequence based on relative weightage of members in global damage for gravity load designed buildings", Earthq. Struct., 26(2), 131-147. https://doi.org/10.12989/eas.2024.26.2.131.
- Wang, Y. and Ma, H. (2023), "Multi-objective stochastic optimization of tuned mass dampers under earthquake excitation considering soil-structure interaction", J. Asian Arch. Build. Eng., 23(5), 1596-1611. https://doi.org/10.1080/13467581.2023.2270754.
- Yang, J.N., Akbarpour, A. and Ghaemmaghami, P. (1987), "New optimal control algorithms for structural control", J. Eng. Mech., 113(9), 1369-1386. https://doi.org/10.1061/(asce)0733-9399(1987)113:9(1369).