DOI QR코드

DOI QR Code

Optimization of active controlled system for structures using metaheuristic algorithms

  • Nirmal S. Mehta (Department of Civil Engineering, SVNIT Surat) ;
  • Vishisht Bhaiya (Department of Civil Engineering, SVNIT Surat) ;
  • K. A. Patel (Department of Civil Engineering, SVNIT Surat)
  • Received : 2024.06.17
  • Accepted : 2024.08.24
  • Published : 2024.11.25

Abstract

This study presents a method for optimization of weighting matrices of the linear quadratic regulator (LQR) control algorithm in order to design an optimal active control system using metaheuristic algorithms. The LQR is a widely used control technique in engineering for designing optimal controllers for linear systems by minimizing a quadratic cost function. However, the performance of the LQR strongly depends on the appropriate selection of weighting matrices, which are usually determined by some thumb rule or exhaustive search method. In the present study, for the optimization of weighting matrices, four metaheuristic algorithms including, Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Grey Wolf Optimizer (GWO) and, Whale Optimization Algorithm (WOA) are considered. To generate optimal weighting matrices, the objective function used consists of displacement and absolute acceleration. During the optimization process, a response effectiveness factor is also checked for displacement and acceleration as a constraint for the proper selection of weighting matrices. To study the effectiveness of optimized active control system to those for the exhaustive search method, the various controlled responses of the system are compared with the corresponding uncontrolled system. The optimized weighting matrices effectively reduce the displacement, velocity, and acceleration responses of the structure. Based on the simulation study, it can be observed that GWO performs well compared to the PSO, GA, and WO algorithms. By employing metaheuristic algorithms, this study showcases a more efficient and effective approach to finding optimal weighting matrices, thereby enhancing the performance of active control systems.

Keywords

Acknowledgement

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by the Dean (Research & Consultancy), SVNIT Surat under Grant No. Dean (R&C)/2020-21/1155.

References

  1. Amini, F. and Tavassoli, M.R. (2005), "Optimal structural active control force, number and placement of controllers", Eng. Struct., 27(9), 1306-1316. https://doi.org/10.1016/j.engstruct.2005.01.006.
  2. Baygi, S.M.H. and Karsaz, A. (2018), "A hybrid optimal PIDLQR control of structural system: A case study of salp swarm optimization", 2018 3rd Conference on Swarm Intelligence and Evolutionary Computation (CSIEC), Bam, Iran, March.
  3. Bekdas, G. and Nigdeli, S.M. (2011), "Estimating optimum parameters of tuned mass dampers using harmony search", Eng. Struct., 33(9), 2716-2723. https://doi.org/10.1016/j.engstruct.2011.05.024.
  4. Bhaiya, V., Bharti, S.D., Shrimali, M.K. and Datta, T.K. (2016), "Effect of noises on the active optimal control of partially observed structures for white random ground motion", Noise Control Eng. J., 64(6), 789-799. https://doi.org/10.3397/1/376420.
  5. Bhardwaj, A., Matsagar, V. and Nagpal, A. (2016), "Energy balance assessment of tall buildings equipped with friction dampers for earthquake response control", J. Struct. Eng. Struct. Eng. Res. Center (SERC), 43(1), 91-101.
  6. Bigdeli, A., Rahman, M. and Kim, D. (2023), "Vibration control of low-rise buildings considering nonlinear behavior of concrete using tuned mass damper", Struct. Eng. Mech., 88(3), 209-220. https://doi.org/10.12989/sem.2023.88.3.209.
  7. Bonabeau, E., Dorigo, M. and Theraulaz, G. (1999), Swarm Intelligence: From Natural to Artificial Systems, Oxford University Press, Oxford, UK.
  8. Cao, A.T., Nahar, T.T., Kim, D. and Choi, B. (2019), "Earthquake risk assessment of concrete gravity dam by cumulative absolute velocity and response surface methodology", Earthq. Struct., 17(5), 511-519. https://doi.org/10.12989/eas.2019.17.5.511.
  9. Cha, Y.J., Kim, Y., Raich, A.M. and Agrawal, A.K. (2013), "Multi-objective optimization for actuator and sensor layouts of actively controlled 3D buildings", J. Vib. Control, 19(6), 942-960. https://doi.org/10.1177/1077546311430105.
  10. Chacko, S.J., Neeraj, P.C. and Abraham, R.J. (2024), "Optimizing LQR controllers: A comparative study", Results Control Opt., 14(2), 100387. https://doi.org/10.1016/j.rico.2024.100387.
  11. Debnath, P.P. and Choudhury, S. (2017), "Nonlinear analysis of shear wall in unified performance based seismic design of buildings", Asian J. Civil Eng., 18(4), 633-642.
  12. Dehghani, M., Trojovska, E. and Trojovsky, P. (2022), "A new human-based metaheuristic algorithm for solving optimization problems on the base of simulation of driving training process", Sci.ic Rep., 12(1), 9924. https://doi.org/10.1038/s41598-022-14225-7.
  13. Desale, S.A., Rasool, A., Andhale, S. and Rane, P.V. (2015), "Heuristic and meta-heuristic algorithms and their relevance to the real world: A survey", Int. J. Comput. Eng. Res. Trends, 2(5), 296-304.
  14. Eberhart, R. and Kennedy, J. (1995), "New optimizer using particle swarm theory", Proceedings of the International Symposium on Micro Machine and Human Science, Nagoya, Japan, October.
  15. Farzam, M.F., Jalali, H.H., Gavgani, S.A.M., Kayabekir, A.E. and Bekdas, G. (2021), "Current trends in the optimization approaches for optimal structural control", Advances in Structural Engineering-Optimization. Studies in Systems, Decision and Control, Springer International Publishing, Cham, Switzerland.
  16. FEMA (2009), P-695: Quantification of Building Seismic Performance Factors, US Department of Homeland Security, Federal Emergency Management Agency, Washington, D.C., USA.
  17. Gad, A.G. (2022), "Particle swarm optimization algorithm and its applications: A systematic review", Arch. Comput. Methods Eng., 29(5), 2531-2561 https://doi.org/10.1007/s11831-021-09694-4.
  18. George, N.V. and Panda, G. (2012), "A particle-swarm-optimization-based decentralized nonlinear active noise control system", IEEE Trans. Instrument. Measure., 61(12), 3378-3386. https://doi.org/10.1109/TIM.2012.2205492.
  19. Ghasemof, A., Mirtaheri, M., Mohammadi, R.K. and Salkhordeh, M. (2022), "A multi-objective optimization framework for optimally designing steel moment frame structures under multiple seismic excitations", Earthq. Struct., 23(1), 35-57. https://doi.org/10.12989/eas.2022.23.1.035.
  20. Goldberg, D.E. and Holland, J.H. (1988), "Genetic algorithms and machine learning", Mach. Learn., 3(2), 95-99. https://doi.org/10.1023/A:1022602019183.
  21. Heidari, A.H., Etedali, S. and Javaheri-Tafti, M.R. (2018), "A hybrid LQR-PID control design for seismic control of buildings equipped with ATMD", Front. Struct. Civil Eng., 12(1), 44-57. https://doi.org/10.1007/s11709-016-0382-6.
  22. Holland, J.H. (1992), "Genetic algorithms", Sci. Am., 267(1), 66-73.
  23. Hou, Y., Gao, H., Wang, Z. and Du, C. (2022), "Improved grey wolf optimization algorithm and application", Sensors, 22(10), 1-19. https://doi.org/10.3390/s22103810.
  24. Huang, J., Chong, X., Jiang, Q., Ye, X.G. and Wang, H. (2018), "Seismic response reduction of megaframe with vibration control substructure", Shock Vib., 2018, 1-14. https://doi.org/10.1155/2018/9427908.
  25. Ibidapo-Obe, O. (1985), "Optimal actuators placements for the active control of flexible structures", J. Math. Anal. Appl., 105(1), 12-25. https://doi.org/10.1016/0022-247X(85)90094-0.
  26. Irakoze, J.P., Li, S., Pu, W., Nyangi, P. and Sibomana, A. (2023), "Optimization of base-isolated structure with negative stiffness tuned inerter damper targeting seismic response reduction", Earthq. Struct., 25(6), 399-415. https://doi.org/10.12989/eas.2023.25.6.399.
  27. IS 1893 (Part-1) (2016), Criteria for Earthquake Resistant Design of Structures: Part 1 General Provisions and Buildings, Bureau of Indian Standard, New Delhi, India.
  28. Jiang, Q., Lu, X.Z., Chong, X., Ye, X.G. and Huang, J.Q. (2015), "Damping effect analysis of mega-frame structures with a vibration absorption substructure", Eng. Mech., 32(6), 39-44. https://doi.org/10.6052/j.issn.1000-4750.2014.05.S048.
  29. Katebi, J., Shoaei-parchin, M., Shariati, M., Trung, N.T. and Khorami, M. (2020), "Developed comparative analysis of metaheuristic optimization algorithms for optimal active control of structures", Eng. Comput., 36(4), 1539-1558. https://doi.org/10.1007/s00366-019-00780-7.
  30. Katoch, S., Chauhan, S.S. and Kumar, V. (2021), "A review on genetic algorithm: Past, present, and future", Multimedia Tools Appl., 80(5), 8091-8126. https://doi.org/10.1007/s11042-020-10139-6.
  31. Kaveh, A. (2017), "Applications of metaheuristic optimization algorithms in civil engineering", Applications of Metaheuristic Optimization Algorithms in Civil Engineering, Springer International Publishing, Cham, Switzerland.
  32. Kaveh, A. and Ghazaan, M.I. (2018). "Meta-heuristic algorithms for optimal design of real-size structures", Meta-Heuristic Algorithms for Optimal Design of Real-Size Structures, Springer International Publishing, Cham, Switzerland.
  33. Kayabekir, A.E., Nigdeli, S.M. and Bekdas, G. (2022), "A hybrid metaheuristic method for optimization of active tuned mass dampers", Compu. Aid. Civil Infrastr. Eng., 37(8), 1027-1043. https://doi.org/10.1111/mice.12790.
  34. Kennedy, J. and Eberhart, R. (1995), "Particle swarm optimization", Int. Conf. Neural Netw., 4, 1942-1948. https://doi.org/10.1007/978-3-031-17922-8_4.
  35. Kirkpatrick, S., Gelatt, C.D. and Vecchi, M.P. (1983), "Optimization by simulated annealing", Sci., 220(4598), 671-680. https://doi.org/10.1126/science.220.4598.671.
  36. Liang, X. and Zhang, Z. (2022), "A whale optimization algorithm with convergence and exploitability enhancement and its application", Math. Probl. Eng., 2022(1), 2904625. https://doi.org/10.1155/2022/2904625.
  37. Lin, X. and Lin, W. (2022), "Whale optimization algorithm-based LQG-adaptive neuro-fuzzy control for seismic vibration mitigation with MR dampers", Shock Vib., 2022, 1-21. https://doi.org/10.1155/2022/4060660.
  38. Liu, Y.L., Kumar, S., Wang, D.H. and Guo, D. (2024), "Effect of vertical reinforcement connection level on seismic behavior of precast RC shear walls: Experimental study", Earthq. Struct., 26(6), 449-461. https://doi.org/https://doi.org/10.12989/eas.2024.26.6.449.
  39. Lu, X., Liao, W., Huang, W., Xu, Y. and Chen, X. (2021), "An improved linear quadratic regulator control method through convolutional neural network-based vibration identification", J. Vib. Control, 27(7-8), 839-853. https://doi.org/10.1177/1077546320933756.
  40. Mafarja, M.M. and Mirjalili, S. (2017), "Hybrid whale optimization algorithm with simulated annealing for feature selection", Neurocomput., 260, 302-312. https://doi.org/10.1016/j.neucom.2017.04.053.
  41. MATLAB and Statistics Toolbox Release (2014), MATLAB and Statistics Toolbox Release, The MathWorks, Inc., Natick, MA, USA.
  42. Mehta, N.S., Bhaiya, V., Patel, K.A. and Farsangi, E.N. (2024), "Predictive active control of building structures using LQR and artificial intelligence", Earthq. Eng. Eng. Vib., 23(2), 489-502. https://doi.org/10.1007/s11803-024-2250-z.
  43. Mehta, N.S. and Mevada, S.V. (2017), "Seismic response of two-way asymmetric building installed with hybrid arrangement of dampers under bi-directional excitations", Int. J. Struct. Eng., 8(3), 249-271. https://doi.org/10.1504/IJSTRUCTE.2017.086421.
  44. Mehta, N.S., Mevada, S.V., Patel, K.A. and Bhaiya, V. (2022), "Seismic response of two-way asymmetric building with semi-active stiffness damper under bi-directional excitations", ASPS Conf. Proc., 1(1), 849-855. https://doi.org/10.38208/acp.v1.593.
  45. Mirjalili, S. (2019a), "Evolutionary algorithms and neural networks", Stud. Comput. Intell., 780, 1-159. https://doi.org/10.1007/978-3-319-93025-1.
  46. Mirjalili, S. (2019b), "Genetic algorithm", Evolutionary Algorithms and Neural Networks: Theory and Applications, Springer International Publishing, Cham, Switzerland.
  47. Mirjalili, S. (2019c), "Particle swarm optimisation", Evolutionary Algorithms and Neural Networks, Springer International Publishing, Cham, Switzerland.
  48. Mirjalili, S. and Hashim, S.Z.M. (2010), "A new hybrid PSOGSA algorithm for function optimization", Proc. ICCIA 2010 - 2010 Int. Conf. Comput. Informat. Appl., 1, 374-377. https://doi.org/10.1109/ICCIA.2010.6141614.
  49. Mirjalili, S. and Lewis, A. (2016), "The whale optimization algorithm", Adv. Eng. Softw., 95, 51-67. https://doi.org/10.1016/j.advengsoft.2016.01.008.
  50. Mirjalili, S., Lewis, A. and Sadiq, A.S. (2014), "Autonomous Particles groups for particle swarm optimization", Arab. J. Sci. Eng., 39(6), 4683-4697. https://doi.org/10.1007/s13369-014-1156-x.
  51. Mirjalili, S., Mirjalili, S.M. and Lewis, A. (2014), "Grey wolf optimizer", Adv. Eng. Softw., 69, 46-61. https://doi.org/10.1016/j.advengsoft.2013.12.007.
  52. Mirjalili, S., Saremi, S., Mirjalili, S.M. and Coelho, L.D.S. (2016), "Multi-objective grey wolf optimizer: A novel algorithm for multi-criterion optimization", Expert Syst. Appl., 47, 106-119. https://doi.org/10.1016/j.eswa.2015.10.039.
  53. Miyamoto, K., She, J., Sato, D. and Yasuo, N. (2018), "Automatic determination of LQR weighting matrices for active structural control", Eng. Struct., 174, 308-321. https://doi.org/10.1016/j.engstruct.2018.07.009.
  54. Moghaddasie, B. and Jalaeefar, A. (2019), "Optimization of LQR method for the active control of seismically excited structures", Smart Struct. Syst., 23(3), 243-261. https://doi.org/10.12989/sss.2019.23.3.243.
  55. Niharika, T., Said, E. and Vasant, M. (2021), "Earthquake response control of isolated bridges using supplementary passive dampers", Pract. Period. Struct. Des. Constr., 26(2), 4021002. https://doi.org/10.1061/(ASCE)SC.1943-5576.0000563.
  56. Pourzeynali, S., Lavasani, H.H. and Modarayi, A.H. (2007), "Active control of high rise building structures using fuzzy logic and genetic algorithms", Eng. Struct., 29(3), 346-357. https://doi.org/10.1016/j.engstruct.2006.04.015.
  57. Pourzeynali, S. and Mousanejad, T. (2010), "Optimization of semi-active control of seismically excited buildings using genetic algorithms", Sci. Iran., 17(1), 26-38.
  58. Pourzeynali, S., Salimi, S. and Kalesar, H.E. (2013), "Robust multi-objective optimization design of TMD control device to reduce tall building responses against earthquake excitations using genetic algorithms", Sci. Iran., 20(2), 207-221. https://doi.org/10.1016/j.scient.2012.11.015.
  59. Schmidt, A. and Lewandowski, R. (2010), "The design of an active seismic control system for a building using the particle swarm optimization", Artifical Intelligence and Soft Computing: 10th International Conference, ICAISC 2010, Zakopane, Poland, June.
  60. Soong, T.T., Masri, S.F. and Housner, G.W. (1991), "An overview of active structural control under seismic loads", Earthq. Spectra, 7(3), 483-505. https://doi.org/10.1193/1.1585638.
  61. Talyan, N. and Ramancharla, P.K. (2024), "Strengthening sequence based on relative weightage of members in global damage for gravity load designed buildings", Earthq. Struct., 26(2), 131-147. https://doi.org/10.12989/eas.2024.26.2.131.
  62. Wang, Y. and Ma, H. (2023), "Multi-objective stochastic optimization of tuned mass dampers under earthquake excitation considering soil-structure interaction", J. Asian Arch. Build. Eng., 23(5), 1596-1611. https://doi.org/10.1080/13467581.2023.2270754.
  63. Yang, J.N., Akbarpour, A. and Ghaemmaghami, P. (1987), "New optimal control algorithms for structural control", J. Eng. Mech., 113(9), 1369-1386. https://doi.org/10.1061/(asce)0733-9399(1987)113:9(1369).