참고문헌
- Acar, M.C., SEner, A., OZbayrak, A. and CElIK, A.I. (2020), "Geopolimer harclarda zeolit katkisinin etkisi", J. Eng. Sci. Des., 8(3), 820-832. https://doi.org/10.21923/jesd.768565.
- Al-Majidi, M.H., Lampropoulos, A., Cundy, A. and Meikle, S. (2016), "Development of geopolymer mortar under ambient temperature for in situ applications", Constr. Build. Mater., 120, 198-211. https://doi.org/10.1016/j.conbuildmat.2016.05.085.
- Australian Standard (2014), AS 1012.3.1:2014: Methods of Testing Concrete, Method 3.1: Determination of Properties Related to the Consistency of Concrete-Slump Test, Australian Standard, Sydney, Australia.
- Australian Standard AJCS (2004), Australian Standard AJCS, Vol. 3600, Standards Australia, Sydney, Australia.
- Balamurugan, R., Balachandran, R. and Kalaiyarasi, S. (2017), "Experimental investigation of glass fibre reinforced geopolymer concrete", Eng. Sci. Technol, 7(2), 15-19.
- Bhalchandra, S.A. and Bhosle, A.Y. (2013), "Properties of glass fibre reinforced geopolymer concrete" Int. J. Modern Eng. Res., 3(4), 2007-2010.
- Bonen, D. and Cohen, M.D. (1992a), "Magnesium sulfate attack on portland cement paste-I. Microstructural analysis", Cement Concrete Res., 22(1), 169-180. https://doi.org/10.1016/0008-8846(92)90147-N.
- Bonen, D. and Cohen, M.D. (1992b), "Magnesium sulfate attack on portland cement paste-II. Chemical and mineralogical analyses", Cement Concrete Res., 22(4), 707-718. https://doi.org/10.1016/0008-8846(92)90023-O.
- Brown, P.W. and Bothe Jr, J.V. (1993), "The stability of ettringite", Adv. Cement Res., 5(18), 47-63. https://doi.org/10.1680/adcr.1993.5.18.47.
- Chindaprasirt, P., Chareerat, T., & Sirivivatnanon, V. (2007). "Workability and strength of coarse high calcium fly ash geopolymer." Cement and Concrete Composites, 29(3), 224-229. https://doi.org/10.1016/j.cemconcomp.2006.11.002
- Chindaprasirt, P., Thaiwitcharoen, S., Kaewpirom, S. and Rattanasak, U. (2013), "Controlling ettringite formation in FBC fly ash geopolymer concrete", Cement Concrete Compos., 41, 24-28. https://doi.org/10.1016/j.cemconcomp.2013.04.009.
- Das, R., Panda, S., Saumendra Sahoo, A. and Kumar Panigrahi, S. (2023), "Effect of superplasticizer types and dosage on the flow characteristics of GGBFS based self-compacting geopolymer concrete", Mater. Today: Proc., 2023, 1. https://doi.org/10.1016/j.matpr.2023.06.339.
- Ganesh, C. and Muthukannan, M. (2019), "Investigation on the glass fiber reinforced geopolymer concrete made of M-sand", J. Mater. Eng. Struct., 6(4), 501-512.
- Gupta, N., Gupta, A., Saxena, K.K., Shukla, A. and Goyal, S.K. (2021), "Mechanical and durability properties of geopolymer concrete composite at varying superplasticizer dosage", Mater. Today: Proc., 44, 12-16. https://doi.org/10.1016/j.matpr.2020.05.646.
- Hassan, A., Arif, M. and Shariq, M. (2019), "Use of geopolymer concrete for a cleaner and sustainable environment-A review of mechanical properties and microstructure", J. Clean. Prod., 223, 704-728. https://doi.org/10.1016/j.jclepro.2019.03.051.
- Hossain, K. M. A. (2004). "Properties of volcanic pumice-based cement and lightweight concrete." Cement and Concrete Research, 34(2), 283-291. https://doi.org/10.1016/j.cemconres.2003.08.004
- Jamal, A. S., Bzeni, D. K., & Shi, J. (2024). Thermal and mechanical performance of lightweight geopolymer concrete with pumice aggregate. Structural Concrete, 25(1), 349-364. https://doi.org/10.1002/suco.202300503
- Jumrat, S., Chatveera, B. and Rattanadecho, P. (2011), "Dielectric properties and temperature profile of fly ash-based geopolymer mortar", Int. Commun. Heat Mass Transf., 38(2), 242-248. https://doi.org/10.1016/j.icheatmasstransfer.2010.11.020.
- Kishore, K., Pandey, A., Wagri, N.K., Saxena, A., Patel, J. and Al-Fakih, A. (2023), "Technological challenges in nanoparticle-modified geopolymer concrete: A comprehensive review on nanomaterial dispersion, characterization techniques and its mechanical properties", Case Stud. Constr. Mater., 19, e02265. https://doi.org/10.1016/j.cscm.2023.e02265.
- Lei, J., Fu, J. and Yang, E.H. (2020), "Alkali-silica reaction resistance and pore solution composition of low-calcium fly ash-based geopolymer concrete", Infrastr., 5(11), 96. https://doi.org/10.3390/infrastructures5110096.
- Malkawi, A.B., Nuruddin, M.F., Fauzi, A., Almattarneh, H. and Mohammed, B.S. (2016), "Effects of alkaline solution on properties of the HCFA geopolymer mortars", Procedia Eng., 148, 710-717. https://doi.org/10.1016/j.proeng.2016.06.581.
- Mallikarjuna Rao, G. and Gunneswara Rao, T.D. (2015), "Final setting time and compressive strength of fly ash and GGBS-based geopolymer paste and mortar", Arab. J. Sci. Eng., 40(11), 3067-3074. https://doi.org/10.1007/s13369-015-1757-z.
- Mathew, G. and Issac, B.M. (2020), "Effect of molarity of sodium hydroxide on the aluminosilicate content in laterite aggregate of laterised geopolymer concrete", J. Build. Eng., 32, 101486. https://doi.org/10.1016/j.jobe.2020.101486.
- Midhun, M.S., Rao, T.D.G. and Srikrishna, T.C. (2018), "Mechanical and fracture properties of glass fiber reinforced geopolymer concrete", Adv. Concrete Constr., 6(1), 29. https://doi.org/10.12989/acc.2018.6.1.029.
- Naghizadeh, A., Tchadjie, L.N., Ekolu, S.O. and Welman-Purchase, M. (2024), "Circular production of recycled binder from fly ash-based geopolymer concrete", Constr. Build. Mater., 415, 135098. https://doi.org/10.1016/j.conbuildmat.2024.135098.
- Nematollahi, B., Sanjayan, J., Chai, J.X.H. and Lu, T.M. (2014), "Properties of fresh and hardened glass fiber reinforced fly ash based geopolymer concrete", Key Eng. Mater., 594, 629-633.
- Nuruddin, M.F., Demie, S. and Shafiq, N. (2011), "Effect of mix composition on workability and compressive strength of self-compacting geopolymer concrete", Can. J. Civil Eng., 38(11), 1196-1203. https://doi.org/10.1139/l11-077.
- Ralli, Z.G. and Pantazopoulou, S.J. (2021), "State of the art on geopolymer concrete", Int. J. Struct. Integr., 12(4), 511-533. https://doi.org/10.1108/IJSI-05-2020-0050.
- Rath, B., Debnath, R., Paul, A., Velusamy, P. and Balamoorthy, D. (2020), "Performance of natural rubber latex on calcined clay-based glass fiber-reinforced geopolymer concrete", Asian J. Civil Eng., 21(6), 1051-1066. https://doi.org/10.1007/s42107-020-00261-z.
- Saraya, M.E.S.I. and El-Fadaly, E. (2017), "Preliminary study of alkali activation of basalt: Effect of NaOH concentration on geopolymerization of basalt", J. Mater. Sci. Chem. Eng., 5(11), 58-76. https://doi.org/10.4236/msce.2017.511006.
- Sathanandam, T., Awoyera, P.O., Vijayan, V. and Sathishkumar, K. (2017), "Low carbon building: Experimental insight on the use of fly ash and glass fibre for making geopolymer concrete", Sustainab. Environ. Res., 27(3), 146-153. https://doi.org/10.1016/j.serj.2017.03.005.
- Sato, T. and Diallo, F. (2010), "Seeding effect of nano-CaCO3 on the hydration of tricalcium silicate", Transp/ Res/ Record, 2141(1), 61-67. https://doi.org/10.3141/2141-11.
- Satria, J., Sugiarto, A. and Hardjito, D. (2017), "Effect of variability of fly ash obtained from the same source on the characteristics of geopolymer", MATEC Web Conf., 97, 6. https://doi.org/10.1051/matecconf/20179701026.
- Sheetz, B.E. and Kwan, S. (2003), "Control of ettringite swelling", Ashlines, 4(1), 1-10.
- Shilar, F.A., Ganachari, S.V., Patil, V.B., Khan, T.M.Y. and Dawood Abdul Khadar, S. (2022), "Molarity activity effect on mechanical and microstructure properties of geopolymer concrete: A review", Case Stud. Constr. Mater., 16, e01014. https://doi.org/10.1016/j.cscm.2022.e01014.
- Singh, A., Bhadauria, S.S., Thakare, A.A., Kumar, A., Mudgal, M. and Chaudhary, S. (2024), "Durability assessment of mechanochemically activated geopolymer concrete with a low molarity alkali solution", Case Stud. Constr. Mater., 20, e02715. https://doi.org/10.1016/j.cscm.2023.e02715.
- Stark, J. and Bollmann, K. (2000), "Delayed ettringite formation in concrete", Nord. Concrete Res. Publ., 23, 4-28.
- Udvardi, B., Hamza, A., Kurovics, E., Kocserha, I., Geber, R. and Simon, A. (2020), "Production of lightweight geopolymer concrete", J. Phys.: Conf. Ser., 1527(1), 012045. https://doi.org/10.1088/1742-6596/1527/1/012045.
- Van Jaarsveld, J.G.S., Van Deventer, J.S.J. and Lukey, G.C. (2003), "The characterisation of source materials in fly ash-based geopolymers", Mater. Lett., 57(7), 1272-1280. https://doi.org/10.1016/S0167-577X(02)00971-0.
- Widodo, S., Satyarno, I. and Tudjono, S. (2014), "Experimental study on the potential use of pumice breccia as coarse aggregate in structural lightweight concrete", Int. J. Sustain. Constr. Eng. Technol., 5(1), 1-8.
- Wongsa, A., Sata, V., Nuaklong, P. and Chindaprasirt, P. (2018), "Use of crushed clay brick and pumice aggregates in lightweight geopolymer concrete", Constr. Build. Mater., 188, 1025-1034. https://doi.org/10.1016/j.conbuildmat.2018.08.176.
- Zaetang, Y., Sata, V., Chindaprasirt, P. and Cao, H.T. (2013), "Use of lightweight aggregates in pervious concrete." Constr. Build. Mater., 48, 585-591. https://doi.org/10.1016/j.conbuildmat.2013.07.077.
- Zeyad, A.M., Magbool, H.M., Tayeh, B.A., de Azevedo, A.R.G., Abutaleb, A. and Hussain, Q. (2022), "Production of geopolymer concrete by utilizing volcanic pumice dust", Case Stud. Constr. Mater., 16, e00802. https://doi.org/10.1016/j.cscm.2021.e00802.
- Zuaiter, M., El-Hassan, H., El-Maaddawy, T. and El-Ariss, B. (2023), "Flexural and shear performance of geopolymer concrete reinforced with hybrid glass fibers", J. Build. Eng., 72, 106580. https://doi.org/10.1016/j.jobe.2023.106580.