DOI QR코드

DOI QR Code

Lightweight geopolymer concrete using pumice and glass fiber

  • Ali Ihsan Celik (Department of Construction, Tomarza Mustafa Akincioglu Vocational School, Kayseri University) ;
  • Yasin Onuralp Ozkilic (Department of Civil Engineering, Faculty of Engineering, Necmettin Erbakan University)
  • Received : 2022.07.26
  • Accepted : 2024.03.25
  • Published : 2024.11.25

Abstract

This research is a study in which many different parameters are considered together in order to better understand the strength and durability properties of lightweight geopolymer concrete (LWGPC). Volcanic pumice aggregate, which has an important place in the production of lightweight concrete, has been replaced by coarse aggregate at the rates of 25%, 50% and 75%. Second, glass fiber was added as a fraction of volume by weight at 0.5%, 1%, 2%, and 3%. The lengths of the glass fibers of 3, 6 and 12 mm were used. Other variable is the change of NaOH molarity. In addition to the most commonly used 12M, 11M and 13M were also tested in the research. As a result of the experiments, approximately 27 MPa compressive strength and 14 MPa flexural strength were obtained with the addition of 25% pumice aggregate. While 1% and 2% glass fiber additives exhibited good compressive and flexural performance, in the NaOH molarity effect test, the highest compressive strength was obtained with 12M, while the highest flexural strength was obtained with 13M. Concentrations of 12 and 13M did not cause any problems in terms of precipitation, workability and setting time, but the best results were obtained with M12. Using molarity of 11M should be avoided. This study, in addition to making significant contributions to the environmental impact of LWGPC concrete, shows that using 25% pumice compressive strength over 25 MPa can be obtained.

Keywords

References

  1. Acar, M.C., SEner, A., OZbayrak, A. and CElIK, A.I. (2020), "Geopolimer harclarda zeolit katkisinin etkisi", J. Eng. Sci. Des., 8(3), 820-832. https://doi.org/10.21923/jesd.768565.
  2. Al-Majidi, M.H., Lampropoulos, A., Cundy, A. and Meikle, S. (2016), "Development of geopolymer mortar under ambient temperature for in situ applications", Constr. Build. Mater., 120, 198-211. https://doi.org/10.1016/j.conbuildmat.2016.05.085.
  3. Australian Standard (2014), AS 1012.3.1:2014: Methods of Testing Concrete, Method 3.1: Determination of Properties Related to the Consistency of Concrete-Slump Test, Australian Standard, Sydney, Australia.
  4. Australian Standard AJCS (2004), Australian Standard AJCS, Vol. 3600, Standards Australia, Sydney, Australia.
  5. Balamurugan, R., Balachandran, R. and Kalaiyarasi, S. (2017), "Experimental investigation of glass fibre reinforced geopolymer concrete", Eng. Sci. Technol, 7(2), 15-19.
  6. Bhalchandra, S.A. and Bhosle, A.Y. (2013), "Properties of glass fibre reinforced geopolymer concrete" Int. J. Modern Eng. Res., 3(4), 2007-2010.
  7. Bonen, D. and Cohen, M.D. (1992a), "Magnesium sulfate attack on portland cement paste-I. Microstructural analysis", Cement Concrete Res., 22(1), 169-180. https://doi.org/10.1016/0008-8846(92)90147-N.
  8. Bonen, D. and Cohen, M.D. (1992b), "Magnesium sulfate attack on portland cement paste-II. Chemical and mineralogical analyses", Cement Concrete Res., 22(4), 707-718. https://doi.org/10.1016/0008-8846(92)90023-O.
  9. Brown, P.W. and Bothe Jr, J.V. (1993), "The stability of ettringite", Adv. Cement Res., 5(18), 47-63. https://doi.org/10.1680/adcr.1993.5.18.47.
  10. Chindaprasirt, P., Chareerat, T., & Sirivivatnanon, V. (2007). "Workability and strength of coarse high calcium fly ash geopolymer." Cement and Concrete Composites, 29(3), 224-229. https://doi.org/10.1016/j.cemconcomp.2006.11.002
  11. Chindaprasirt, P., Thaiwitcharoen, S., Kaewpirom, S. and Rattanasak, U. (2013), "Controlling ettringite formation in FBC fly ash geopolymer concrete", Cement Concrete Compos., 41, 24-28. https://doi.org/10.1016/j.cemconcomp.2013.04.009.
  12. Das, R., Panda, S., Saumendra Sahoo, A. and Kumar Panigrahi, S. (2023), "Effect of superplasticizer types and dosage on the flow characteristics of GGBFS based self-compacting geopolymer concrete", Mater. Today: Proc., 2023, 1. https://doi.org/10.1016/j.matpr.2023.06.339.
  13. Ganesh, C. and Muthukannan, M. (2019), "Investigation on the glass fiber reinforced geopolymer concrete made of M-sand", J. Mater. Eng. Struct., 6(4), 501-512.
  14. Gupta, N., Gupta, A., Saxena, K.K., Shukla, A. and Goyal, S.K. (2021), "Mechanical and durability properties of geopolymer concrete composite at varying superplasticizer dosage", Mater. Today: Proc., 44, 12-16. https://doi.org/10.1016/j.matpr.2020.05.646.
  15. Hassan, A., Arif, M. and Shariq, M. (2019), "Use of geopolymer concrete for a cleaner and sustainable environment-A review of mechanical properties and microstructure", J. Clean. Prod., 223, 704-728. https://doi.org/10.1016/j.jclepro.2019.03.051.
  16. Hossain, K. M. A. (2004). "Properties of volcanic pumice-based cement and lightweight concrete." Cement and Concrete Research, 34(2), 283-291. https://doi.org/10.1016/j.cemconres.2003.08.004
  17. Jamal, A. S., Bzeni, D. K., & Shi, J. (2024). Thermal and mechanical performance of lightweight geopolymer concrete with pumice aggregate. Structural Concrete, 25(1), 349-364. https://doi.org/10.1002/suco.202300503
  18. Jumrat, S., Chatveera, B. and Rattanadecho, P. (2011), "Dielectric properties and temperature profile of fly ash-based geopolymer mortar", Int. Commun. Heat Mass Transf., 38(2), 242-248. https://doi.org/10.1016/j.icheatmasstransfer.2010.11.020.
  19. Kishore, K., Pandey, A., Wagri, N.K., Saxena, A., Patel, J. and Al-Fakih, A. (2023), "Technological challenges in nanoparticle-modified geopolymer concrete: A comprehensive review on nanomaterial dispersion, characterization techniques and its mechanical properties", Case Stud. Constr. Mater., 19, e02265. https://doi.org/10.1016/j.cscm.2023.e02265.
  20. Lei, J., Fu, J. and Yang, E.H. (2020), "Alkali-silica reaction resistance and pore solution composition of low-calcium fly ash-based geopolymer concrete", Infrastr., 5(11), 96. https://doi.org/10.3390/infrastructures5110096.
  21. Malkawi, A.B., Nuruddin, M.F., Fauzi, A., Almattarneh, H. and Mohammed, B.S. (2016), "Effects of alkaline solution on properties of the HCFA geopolymer mortars", Procedia Eng., 148, 710-717. https://doi.org/10.1016/j.proeng.2016.06.581.
  22. Mallikarjuna Rao, G. and Gunneswara Rao, T.D. (2015), "Final setting time and compressive strength of fly ash and GGBS-based geopolymer paste and mortar", Arab. J. Sci. Eng., 40(11), 3067-3074. https://doi.org/10.1007/s13369-015-1757-z.
  23. Mathew, G. and Issac, B.M. (2020), "Effect of molarity of sodium hydroxide on the aluminosilicate content in laterite aggregate of laterised geopolymer concrete", J. Build. Eng., 32, 101486. https://doi.org/10.1016/j.jobe.2020.101486.
  24. Midhun, M.S., Rao, T.D.G. and Srikrishna, T.C. (2018), "Mechanical and fracture properties of glass fiber reinforced geopolymer concrete", Adv. Concrete Constr., 6(1), 29. https://doi.org/10.12989/acc.2018.6.1.029.
  25. Naghizadeh, A., Tchadjie, L.N., Ekolu, S.O. and Welman-Purchase, M. (2024), "Circular production of recycled binder from fly ash-based geopolymer concrete", Constr. Build. Mater., 415, 135098. https://doi.org/10.1016/j.conbuildmat.2024.135098.
  26. Nematollahi, B., Sanjayan, J., Chai, J.X.H. and Lu, T.M. (2014), "Properties of fresh and hardened glass fiber reinforced fly ash based geopolymer concrete", Key Eng. Mater., 594, 629-633.
  27. Nuruddin, M.F., Demie, S. and Shafiq, N. (2011), "Effect of mix composition on workability and compressive strength of self-compacting geopolymer concrete", Can. J. Civil Eng., 38(11), 1196-1203. https://doi.org/10.1139/l11-077.
  28. Ralli, Z.G. and Pantazopoulou, S.J. (2021), "State of the art on geopolymer concrete", Int. J. Struct. Integr., 12(4), 511-533. https://doi.org/10.1108/IJSI-05-2020-0050.
  29. Rath, B., Debnath, R., Paul, A., Velusamy, P. and Balamoorthy, D. (2020), "Performance of natural rubber latex on calcined clay-based glass fiber-reinforced geopolymer concrete", Asian J. Civil Eng., 21(6), 1051-1066. https://doi.org/10.1007/s42107-020-00261-z.
  30. Saraya, M.E.S.I. and El-Fadaly, E. (2017), "Preliminary study of alkali activation of basalt: Effect of NaOH concentration on geopolymerization of basalt", J. Mater. Sci. Chem. Eng., 5(11), 58-76. https://doi.org/10.4236/msce.2017.511006.
  31. Sathanandam, T., Awoyera, P.O., Vijayan, V. and Sathishkumar, K. (2017), "Low carbon building: Experimental insight on the use of fly ash and glass fibre for making geopolymer concrete", Sustainab. Environ. Res., 27(3), 146-153. https://doi.org/10.1016/j.serj.2017.03.005.
  32. Sato, T. and Diallo, F. (2010), "Seeding effect of nano-CaCO3 on the hydration of tricalcium silicate", Transp/ Res/ Record, 2141(1), 61-67. https://doi.org/10.3141/2141-11.
  33. Satria, J., Sugiarto, A. and Hardjito, D. (2017), "Effect of variability of fly ash obtained from the same source on the characteristics of geopolymer", MATEC Web Conf., 97, 6. https://doi.org/10.1051/matecconf/20179701026.
  34. Sheetz, B.E. and Kwan, S. (2003), "Control of ettringite swelling", Ashlines, 4(1), 1-10.
  35. Shilar, F.A., Ganachari, S.V., Patil, V.B., Khan, T.M.Y. and Dawood Abdul Khadar, S. (2022), "Molarity activity effect on mechanical and microstructure properties of geopolymer concrete: A review", Case Stud. Constr. Mater., 16, e01014. https://doi.org/10.1016/j.cscm.2022.e01014.
  36. Singh, A., Bhadauria, S.S., Thakare, A.A., Kumar, A., Mudgal, M. and Chaudhary, S. (2024), "Durability assessment of mechanochemically activated geopolymer concrete with a low molarity alkali solution", Case Stud. Constr. Mater., 20, e02715. https://doi.org/10.1016/j.cscm.2023.e02715.
  37. Stark, J. and Bollmann, K. (2000), "Delayed ettringite formation in concrete", Nord. Concrete Res. Publ., 23, 4-28.
  38. Udvardi, B., Hamza, A., Kurovics, E., Kocserha, I., Geber, R. and Simon, A. (2020), "Production of lightweight geopolymer concrete", J. Phys.: Conf. Ser., 1527(1), 012045. https://doi.org/10.1088/1742-6596/1527/1/012045.
  39. Van Jaarsveld, J.G.S., Van Deventer, J.S.J. and Lukey, G.C. (2003), "The characterisation of source materials in fly ash-based geopolymers", Mater. Lett., 57(7), 1272-1280. https://doi.org/10.1016/S0167-577X(02)00971-0.
  40. Widodo, S., Satyarno, I. and Tudjono, S. (2014), "Experimental study on the potential use of pumice breccia as coarse aggregate in structural lightweight concrete", Int. J. Sustain. Constr. Eng. Technol., 5(1), 1-8.
  41. Wongsa, A., Sata, V., Nuaklong, P. and Chindaprasirt, P. (2018), "Use of crushed clay brick and pumice aggregates in lightweight geopolymer concrete", Constr. Build. Mater., 188, 1025-1034. https://doi.org/10.1016/j.conbuildmat.2018.08.176.
  42. Zaetang, Y., Sata, V., Chindaprasirt, P. and Cao, H.T. (2013), "Use of lightweight aggregates in pervious concrete." Constr. Build. Mater., 48, 585-591. https://doi.org/10.1016/j.conbuildmat.2013.07.077.
  43. Zeyad, A.M., Magbool, H.M., Tayeh, B.A., de Azevedo, A.R.G., Abutaleb, A. and Hussain, Q. (2022), "Production of geopolymer concrete by utilizing volcanic pumice dust", Case Stud. Constr. Mater., 16, e00802. https://doi.org/10.1016/j.cscm.2021.e00802.
  44. Zuaiter, M., El-Hassan, H., El-Maaddawy, T. and El-Ariss, B. (2023), "Flexural and shear performance of geopolymer concrete reinforced with hybrid glass fibers", J. Build. Eng., 72, 106580. https://doi.org/10.1016/j.jobe.2023.106580.