Acknowledgement
This research is financially supported by the Major Program of Industry and University Cooperation of Fujian Province (2024H6010) and Quanzhou Introduces High-level Talent Team Program (2023CT003).
References
- Andayani, R. and Madenda, S. (2016), "Concrete slump classification using GLCM feature extraction", IOP Conf. Ser.: Mater. Sci. Eng., 131(1), 012011. https://doi.org/10.1088/1757-899X/131/1/01201.
- Baudez, J.C., Chabot, F. and Coussot, P. (2002), "Rheological interpretation of the slump test", Appl. Rheol., 12(3), 133-141. https://doi.org/10.1515/arh-2002-0008.
- Chandwani, V., Agrawal, V. and Nagar, R. (2014), "Modeling and analysis of concrete slump using hybrid artificial neural networks", Int. J. Civil Struct. Constr. Archit. Eng., 8(9), 933-940.
- Cihan, M.T. (2019), "Prediction of concrete compressive strength and slump by machine learning methods", Adv. Civil Eng., 2019, 1-11. https://doi.org/10.1155/2019/3069046.
- Ding, Z. and An, X. (2018), "Deep learning approach for estimating workability of self-compacting concrete from mixing image sequences", Adv. Mater. Sci. Eng., 2018, 1-16. https://doi.org/10.1155/2018/6387930.
- Ding, Z., An, X. (2017), "A method for real-time moisture estimation based on self-compacting concrete workability detected during the mixing process", Constr. Build. Mater., 139, 123-131. https://doi.org/10.1016/j.conbuildmat.2017.02.047.
- Emad, W., Mohammed, A.S., Kurda, R., Ghafor, K., Cavaleri, L., Qaidi, S.M., Hassan, A.M.T. and Asteris, P.G. (2022), "Prediction of concrete materials compressive strength using surrogate models", Struct., 46, 1243-1267. https://doi.org/10.1016/j.istruc.2022.11.002.
- Ferraris, C.F. and de Larrard, F. (1998), "Modified slump test to measure rheological parameters of fresh concrete", Cement Concrete Aggreg., 20(2), 241-247. https://doi.org/10.1520/CCA10417J.
- He, K., Zhang, X., Ren, S. and Sun, J. (2016), "Deep residual learning for image recognition", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, June.
- Kaloop, M.R., Samui, P., Shafeek, M. and Hu, J.W. (2020), "Estimating slump flow and compressive strength of self-compacting concrete using emotional neural networks", Appl. Sci., 10(23), 8543. https://doi.org/10.3390/app10238543.
- Kumar, R. and Mai, H.V.T. (2022), "Prediction and sensitivity analysis of self-compacting concrete slump flow by random forest algorithm", J. Sci. Transp. Technol., 2(1), 32-43. https://doi.org/10.58845/jstt.utt.2022.en.2.1.32-43.
- Li, S. and An, X. (2014), "Method for estimating workability of self-compacting concrete using mixing process images", Comput. Concrete, 13(6), 781-798. http://doi.org/10.12989/cac.2014.13.6.781.
- Liao, S., Li, G., Li, J., Jiang, D., Jiang, G., Sun, Y., Bo, T., Haoyi, Z. and Chen, D. (2021), "Multi-object intergroup gesture recognition combined with fusion feature and KNN algorithm", Intell. Fuzzy Syst., 38(3), 2725-2735. https://doi.org/10.3233/JIFS-179558.
- Mohammed, A., Burhan, L., Ghafor, K., Sarwar, W. and Mahmood, W. (2021), "Artificial neural network (ANN), M5P-tree, and regression analyses to predict the early age compression strength of concrete modified with DBC-21 and VK-98 polymers", Neural Comput. Appl., 33(13), 7851-7873. https://doi.org/10.1007/s00521-020-05525-y.
- Nehdi, M., El Chabib, H. and El Naggar, M.H. (2001), "Predicting performance of self-compacting concrete mixtures using artificial neural networks", Mater. J., 98(5), 394-401.
- Neophytou, M.K.A., Pourgouri, S., Kanellopoulos, A.D., Petrou, M.F., Ioannou, I., Georgiou, G. and Alexandrou, A. (2010), "Determination of the rheological parameters of self-compacting concrete matrix using slump flow test", Appl. Rheol., 20(6), 2402-1. https://doi.org/10.3933/applrheol-20-62402.
- Ponick, A., Langer, A., Beyer, D., Coenen, M., Haist, M. and Heipke, C. (2022), "Image-based deep learning for rheology determination of bingham fluids", Int. Arch. Photogram. Remote Sens. Spat. Inform. Sci., 43, 711-720. https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-711-2022.
- Safayenikoo, H., Khajehzadeh, M. and Nehdi, M.L. (2022), "Novel evolutionary-optimized neural network for predicting fresh concrete slump", Sustainab., 14(9), 4934. https://doi.org/10.3390/su14094934.
- Saha, P., Debnath, P. and Thomas, P. (2020), "Prediction of fresh and hardened properties of self-compacting concrete using support vector regression approach", Neural Comput. Appl., 32(12), 7995-8010. https://doi.org/10.1007/s00521-019-04267-w.
- Sankar, B. and Ramadoss, P. (2023), "Modeling the compressive strength of high-performance concrete containing metakaolin using distinctive statistical techniques", Result. Control Opt., 12, 100241. https://doi.org/10.1016/j.rico.2023.100241.
- Tuan, N.M., Van Hau, Q., Chin, S. and Park, S. (2021), "In-situ concrete slump test incorporating deep learning and stereo vision", Automat. Constr., 121, 103432. https://doi.org/10.1016/j.autcon.2020.103432.
- unlu, R. (2020), "An assessment of machine learning models for slump flow and examining redundant features", Comput. Concrete, 25(6), 565-574. https://doi.org/10.12989/cac.2020.25.6.565.
- Wijaya, D., Prayogo, D., Santoso, D.I., Gunawan, T. and Widjaja, J.A. (2020), "Optimizing prediction accuracy of concrete mixture behavior using hybrid k-means clustering and ensemble machine learning", J. Phys.: Conf. Ser., 1625(1), 012022. https://doi.org/10.1088/1742-6596/1625/1/012022.
- Yang, L., An, X. and Du, S. (2021), "Estimating workability of concrete with different strength grades based on deep learning", Measure., 186, 110073. https://doi.org/10.1016/j.measurement.2021.110073.
- Yoon, J., Kim, H., Ju, S., Li, Z. and Pyo, S. (2023), "Framework for rapid characterization of fresh properties of cementitious materials using point cloud and machine learning", Constr. Build. Mater., 400, 132647. https://doi.org/10.1016/j.conbuildmat.2023.132647.
- Yoon, J., Kim, H., Sim, S.H. and Pyo, S. (2021), "Framework for characterizing the time-dependent volumetric properties of aerated cementitious material", Constr. Build. Mater., 284, 122781. https://doi.org/10.1016/j.conbuildmat.2021.122781.
- Yoon, J., Li, Z. and Kim, H. (2024), "Evaluation of aggregate segregation in self-consolidating concrete using 3D point cloud analysis", Build. Eng., 82, 108199. https://doi.org/10.1016/j.jobe.2023.108199.
- Zhang, X., Akber, M.Z. and Zheng, W. (2022), "Predicting the slump of industrially produced concrete using machine learning: A multiclass classification approach", J. Build. Eng., 58, 104997. https://doi.org/10.1016/j.jobe.2022.104997.