DOI QR코드

DOI QR Code

Validation of Sentinel-3A/B SLSTR Skin Sea Surface Temperature in Coastal Regions of the Korean Peninsula

한반도 연안 해역에서의 Sentinel-3A/B SLSTR 피층 해수면온도 검증

  • Chae-Young Lim (Department of Science Education, Seoul National University) ;
  • Kyung-Ae Park (Department of Earth Science Education, Seoul National University) ;
  • Hee-Young Kim (Department of Science Education, Seoul National University) ;
  • Hui-Tae Joo (National Institute of Fisheries Science) ;
  • Joon-Soo Lee (National Institute of Fisheries Science) ;
  • Jun-Yong Yang (National Institute of Fisheries Science)
  • Received : 2024.09.16
  • Accepted : 2024.10.28
  • Published : 2024.10.31

Abstract

In this study, satellite Sea Surface Temperature (SST) data produced by Sea and Land Surface Temperature Radiometer (SLSTR) were collected to generate matchups with in situ data from coastal waters around the Korean Peninsula to validate its accuracy and analyze the environmental factors influencing it. Satellite data were collected over three years, from January 2021 to December 2023, producing a total of 497 matchups. Differences between SLSTR skin SSTs and buoy temperature measurements showed a Root Mean Square Difference (RMSD) of about 0.42 K and a mean bias of -0.24 K, which met the pre-launch requirements of the SLSTR satellite. The mean bias was -0.14 K during the daytime and -0.29 K at nighttime, with a larger negative bias observed at nighttime. Seasonal variability was also observed with negative and positive biases occurring during winter and summer, respectively. Regionally, the RMSD range was broader in the Yellow Sea and southern region than in the East Sea. In addition, factors such as distance from the coast, wind speed, and spatial gradient of SST were found to influence variability. Satellite SST showed a positive bias during the daytime and negative bias at nighttime under low wind speed conditions below 4 m s-1, with larger overall biases at nighttime. The difference in satellite SST tended to decrease as the distance from the coast increased, whereas the RMSD increased as the spatial gradient of sea surface temperature increased. The findings of this study emphasize the need for further research on the characteristics of satellite SST variability, because this preliminary study on the use of SLSTR satellite SST in highly localized environments highlights the significant influence of various environmental factors.

본 연구에서는 SLSTR로부터 산출된 위성 해수면온도 자료를 수집하여, 한반도 연안 해역에서의 실측 자료와의 일치점을 생산하여 정확도를 검증하고자 하였으며 정확도에 영향을 미치는 환경적 요인에 대해 분석하였다. 2021년 1월부터 2023년 12월까지 3개년의 자료를 수집하였고, 총 497개의 일치점을 생산하였다. SLSTR 위성 해수면온도는 부 이 관측 해수면온도와 비교하였을 때 0.42 K의 평균 제곱근 오차와 -0.24 K의 평균 편차를 보였으며, 이는 SLSTR 위성 사전 발사 요구사항을 만족하는 수치였다. 주간에는 -0.14 K, 야간에는 -0.29 K의 평균 편차로 야간의 음의 편차가 더욱 크게 나타났으며, 겨울철에는 음의 편차가, 여름철에는 양의 편차가 나타나는 계절적 변동성을 보였다. 해역별로는 동해에 비해서 황해와 남해에서 평균 제곱근 오차의 범위가 넓게 나타났다. 이외에도 연안으로부터의 거리, 풍속, 해수면온도의 공간구배와 같은 요인에 의해 변동하는 특성이 나타났다. 위성 해수면온도는 4m s-1의 낮은 풍속 범위에서 주간에는 양의 편차가, 야간에는 음의 편차가 나타났으며 전반적으로 야간의 편차가 더욱 큰 것으로 나타났다. 연안으로부터의 거리가 멀어질수록 위성 해수면온도의 오차는 감소하는 경향을 보였으며 해수면온도의 공간 구배가 커질수록 평균 제곱근 오차가 증가하였다. 본 연구 결과는 다양한 환경적 요인에 의한 영향을 많이 받는 국지적인 환경에서의 SLSTR 위성 해수면온도 활용 연구를 위한 선행 연구로 추후 위성 해수면온도의 오차 변동 특성에 대한 이해를 바탕으로한 연구가 진행되어야 함을 강조하였다.

Keywords

Acknowledgement

이 연구는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구(No. RS-2023-00208935)이며, '해양위성영상 분석 활용 기술개발(RS-2021-KS211406)' 연구사업의 지원을 받아 수행되었습니다. 해양관측 자료 분석은 국립수산과학원 한반도주변해역 해양 변동 특성 연구(R202413)의 지원을 받아 수행되었습니다.

References

  1. Brewin, R.J.W., Smale, D.A., Moore, P.J., Dall'Olmo, G., Miller, P.I., Taylor, B.H., Smyth, T.J., Fishwick, J.R., and Yang, M., 2018, Evaluating Operational AVHRR Sea Surface Temperature Data at the Coastline Using Benthic Temperature Loggers. Remote Sensing, 10(6), 925.
  2. Businger, J. A., Wyngaard, J. C., Izumi, Y., and Bradley, E. F., 1971, Flux-profile relationships in the atmospheric surface layer. Journal of Atmospheric Sciences, 28(2), 181-189.
  3. Choi, B.H., Kim, K.O. and Eum, H.M., 2002, Digital bathymetric and topographic data for neighboring seas of Korea. Journal of Korean Society of Coastal and Ocean Engineers, 14, 41-50. (in Korean)
  4. Choi, W.J., and Yang, C.S., 2023, Detection of Cold Water Mass along the East Coast of Korea Using Satellite Sea Surface Temperature Products. Korean Journal of Remote Sensing, 39(6-1), 1235-1243. (in Korean)
  5. Chung, J.Y., and Lee, T.S., 1990, A study of the tidal fronts in the west coast of Korea in summer-NOAA satellite data, Aug. and Sep., 1990-. Journal of The Korean Earth Science Society, 11(3), 276-282. (in Korean)
  6. Coppo, P., Ricciarelli, B., Brandani, F., Delderfield, J., Ferlet, M., and Mutlow, C., 2010, SLSTR: a high accuracy dual scan temperature radiometer for sea and land surface monitoring from space. Journal of Modern Optics, 57(18), 1815-1830.
  7. Deser, C., Alexander, M.A., Xie, S.P., and Phillips, A.S., 2010, Sea Surface Temperature Variability: Patterns and Mechanisms. Annual Review of Marine Science, 2, 115-143.
  8. Donlon, C.J., Minnett, P.J., Gentemann, C., Nightingale, T.J., Barton, I.J., Ward, B. and Murray, M.J., 2002, Toward improved validation of satellite sea surface skin temperature measurements for climate research, Journal of Climate, 15, 353-369.
  9. Donlon, C.J., 2011, The Sentinel-3 Mission Requirements Traceability Document (MRTD), version 1. EOP-SM/2184/CD-cd. European Space Agency, Noordwik, the Netherlands. 234 p.
  10. Donlon, C.J., Berruti, B., Buongiorno, A., Ferreira, M-H., Femenias, P., Frerick, J., Goryl, P., Klein, U., Laur, H., Mavrocordatos, C., Nieke, J., Rebhan, H., Seitz, B., Stroede, J., and Sciarra, R., 2012, The Global Monitoring for Environment and Security (GMES) Sentinel-3 Mission, Remote Sensing of the Environment, 120, 27-57.
  11. Donlon, C.J., T.J. Nightingale, T. Sheasby, J. Turner, I.S. Robinson, and W.J. Emery, 1999, Implications of the oceanic thermal skin temperature deviation at high wind speed. Geophysical Research Letters, 26(16), 2505-2508.
  12. Drinkwater, M.R. and Rebhan, H., 2007, Sentinel-3 Mission Requirements Document. Sentinel-3 Project Document. European Space Agency, Noordwik, the Netherlands, 60 p.
  13. Dybkjaer, G., Marsouin, A., Eastwood, S, Piolle, J.-F., Hoyer, J. L., Roquet, H., Saux Picart, S., O'Carroll, A., and Tomazic, I., 2018. Sentinel-3 SLSTR SST Validation Report. In: A Match-up Data Base for S3A/SLSTR SST Products Validation, EUMETSAT, 26 p.
  14. Dyer, A., 1974, A review of flux-profile relationships. Boundary-layer Meteorology, 7(3), 363-372.
  15. Fairall, C.W., Bradley, E.F., Godfrey, J.S., Wick, G.A., Edson, J.B., and Young, G.S., 1996, Cool-skin and warm-layer effects on sea surface temperature. Journal of Geophysical Research Oceans, 101(C1), 1295-1308.
  16. Jang, J.C., Park, K.A., and Yang, D.C., 2018, Validation of Sea Surface Wind Estimated from KOMPSAT-5 Backscattering Coefficient Data. Korean Journal of Remote Sensing, 34(6-3), 1383-1398. (in Korean)
  17. Jung, S.H., Kim, Y.J., Park, S.M., and Im, J.H., 2020, Prediction of Sea Surface Temperature and Detection of Ocean Heat Wave in the South Sea of Korea Using Time-series Deep-learning Approaches, Korean Journal of Remote Sensing, 36(5-3), 1077-1093. (in Korean)
  18. Kim, H.Y., and Park, K.A., 2018, Comparison of Sea Surface Temperature from Oceanic Buoys and Satellite Microwave Measurements in the Western Coastal Region of Korean Peninsula. Journal of the Korean earth science society, 39(6), 555-567. (in Korean)
  19. Kim, H.Y., Park, K.A., and Woo, H.J., 2016, Validation of GCOM-W1/AMSR2 Sea Surface Temperature and Error Characteristics in the Northwest Pacific. Korean Journal of Remote Sensing, 32(6), 721-732. (in Korean)
  20. Kim, H.Y., Park, K.A., Chung, S.R., Baek, S.K., Lee, B.I., Shin, I.C., Chung, C.Y., Kim, J.G., and Jung, W.C., 2018, Validation of Sea Surface Temperature (SST) from Satellite Passive Microwave Sensor (GPM/GMI) and Causes of SST Errors in the Northwest Pacific. Korean Journal of Remote Sensing, 34(1), 1-15.
  21. Kim, H.Y., Park, K.A., Joo, H.T., Lee, J.S., and Yang, J.Y., 2023, Validation of NOAA-20/VIIRS Sea Surface Temperature and Error Characteristics in the Seas around Korean Peninsula. Journal of the Korean earth science society, 44(5), 456-468. (in Korean)
  22. Kim, H.Y., Park, K.A., Kwak, B.D., Joo, H.T., and Lee, J.S., 2022, GMI Microwave Sea Surface Temperature Validation and Environmental Factors in the Seas around Korean Peninsula. Journal of the Korean earth science society, 43(5), 604-617. (in Korean)
  23. Kim, S.R., Park, K.Y., Byun, D.S., Jeong, K.Y., and Choi, B.J., 2023, Misconception on the Yellow Sea Warm Current in Secondary-School Textbooks and Development of Teaching Materials for Ocean Current Data Visualization. Journal of The Korean Earth Science Society, 44(1), 13-35. (in Korean)
  24. Lee, M.O., Kim, J.K., Kim, B.K., 2024, Characteristics of Sea Surface Temperature (SST) and Sea Level Rise (SLR) in the Korean coastal waters. Journal of the Korean Society for Marine Environment & Energy, 27(3), 167-177. (in Korean)
  25. Liu, W. T., and Tang, W., 1996, Equivalent neutral wind. JPL Publication 96-17, Jet Propulsion Laboratory, Pasadena, CA, USA, 22 p.
  26. Liu, W. T., Katsaros, K. B., and Businger, J. A., 1979, Bulk parameterization of air-sea exchanges of heat and water vapor including the molecular constraints at the interface. Journal of Atmospheric sciences, 36(9), 1722-1735.
  27. Luo, B., Minnett, P.J., Gentemann, C., and Szczodrak, G., 2019, Improving satellite retrieved night-time infrared sea surface temperatures in aerosol contaminated regions. Remote Sensing of Environment, 223, 8-20.
  28. Luo, B., Minnett, P.J., Szczodrak, M., Kilpatrick, K., and Izaguirre, M., 2020, Validation of Sentinel-3A SLSTR derived Sea-Surface Skin Temperatures with those of the shipborne M-AERI. Remote Sensing of Environment, 244, 111826.
  29. Maturi, E., Harris, A., Mittaz, J., Sapper, J., Wick, G., Zhu, X., Dash, P., and Koner, P., 2017, A New High-Resolution Sea Surface Temperature Blended Analysis. Bulletin of the American Meteorological Society, 98(5), 1015-1026.
  30. Mearchant, C.J., Harris, A.R., Murray, M.J. and Zavody, A.M., 1999, Toward the elimination of bias in satellite retrievals of sea surface temperature 1. Theory, modeling and interalgorithm comparison. Journal of Geophysical Research, 104(C10), 23565-23578.
  31. Meneghesso, C., Seabra, R., Broitman, B.R., Wethey, D.S, Burrows, M.T., Chan, B.K.K., Guy-Haim, T., Ribeiro, P.A., Rilov, G., Santos, A.M., Sousa, L.L., and Lima, F.P., 2020, Remotely-sensed L4 SST underestimates the thermal fingerprint of coastal upwelling. Remote Sensing of Environment, 237, 111588.
  32. Merchant, C.J., 2012, Sea Surface Temperature (SLSTR) Algorithm Theoretical Basis Document. University of Edinburgh, Scotland, 54 p.
  33. Minnett, P.J., 1991, Consequences of sea surface temperature variability on the validation and applications of satellite measurements. Journal of Geophysical Research Oceans, 96(C10), 18475-18489.
  34. Minnett, P.J., Smith, M., and Ward, B., 2011, Measurements of the oceanic thermal skin effect, Deep Sea Research Part II: Topical Studies in Oceanography, 58(6), 861-868.
  35. O'Carroll, A.G., Armstrong, E.M., Beggs, H.M., Bouali, M., Casey, K.S., Corlett, G,K., Dash, P., Donlon, C.J., Gentemann, C.L., Hoyer, J.L., Ignatov, A., Kabobah, K., Kachi, M., Kurihara, Y., Karagali, I., Maturi, E., Merchant, C.J., Marullo, S., Minnett, P.J., Pennybacker, M., Ramakrishnan, B., Ramsankaran, RAAJ., Santoleri, R., Sunder, S., Saux Picart, S., Vazquez-Cuervo, J., and Wimmer W., 2019, Observational Needs of Sea Surface Temperature. Frontiers in Marine Science, 6, 420.
  36. O'Carroll, A.G., Watts, J.G., Horrocks, L.A., Saunders, R.W., and Rayner, N.A., 2006, Validation of the AATSR Meteo Product Sea Surface Temperature. Journal of Atmospheric and Oceanic Technology, 23(5), 711-726.
  37. Park, K.A., Lee, E.Y., Li, X., Chung, S.R., Sohn, E.H., and Hong, S.W., 2014, NOAA/AVHRR sea surface temperature accuracy in the East/Japan Sea. International Journal of Digital Earth, 8(10), 784-804.
  38. Park, K.Y., Sakaida, F., and Kawamura, H., 2008, Oceanic Skin-Bulk Temperature Difference through the Comparison of Satellite-Observed Sea Surface Temperature and In-Situ Measurements. Korean Journal of Remote Sensing, 24(4), 273-287. (in Korean)
  39. Park, S., and Chu, P.C., 2006, Interannual SST variability in the Japan/East Sea and relationship with environmental variables, Journal of Oceanography, Oceanographic Society of Japan, 115-132.
  40. Paulson, C.A., 1970, The mathematical representationof wind speed and temperature profiles in the unstable atmospheric surface layer. Journal of Applied Meteorology, 9(6), 857-861.
  41. Prata, A.J.F., Cechet, R.P., Barton, I.J., and Llewellyn-Jones, D.T., 1990, The along track scanning radiometer for ERS-1-scan geometry and data simulation. IEEE Transcations on Geoscience and Remote Sensing, 28(1), 3-13.
  42. Smale, D.A., and Wernber, T., 2009, Satellite-derived SST data as a proxy for water temperature in nearshore benthic ecology. Marine Ecology Progress Series, 387, 27-37.
  43. Stobart, B., Mayfield, S., Mundy, C., Hobday, A.J., and Hartog, J.R., 2015, Comparison of in situ and satellite sea surface-temperature data from South Australia and Tasmania: how reliable are satellite data as a proxy for coastal temperatures in temperate southern Australia?. Marine and Freshwater Research, 67(5), 612-625.
  44. Suh, Y.S., Jang, L.H., and Hwang, J.D., 2001, Temporal and spatial variations of the cold waters occurring in the eastern coast of the Korean peninsula in summer season.Korean Journal of Fisheries and Aquatic Sciences, 34(5), 435-444. (in Korean)
  45. Woo, H.J., Park, K.A., Li, X., and Lee, E.Y., 2018, Sea Surface Temperature Retrieval from the First Korean Geostationary Satellite COMS Data: Validation and Error Assessment. Remote Sensing, 10(12), 1916.
  46. Xu, F., and Ignatov, A., 2014, In situ SST qulity monitor (iQuam). Journal of Atmospheric and Oceanic Technology, 31, 164-180.
  47. Zavody, A.M., Mutlow, C.T., and Llewellyn-Jones, D.T., 1995, A radiative transfer model for sea surface temperature retrieval for the along-track scanning radiometer. Journal of Geophysical Research, 100(C1), 937-952.