DOI QR코드

DOI QR Code

Comparative Assessment of the Seasonal Prediction Skill of Climate Prediction Systems (GloSea6) Using WMO LC-LRF Verification

WMO LC-LRF 검증 지수를 활용한 기후예측시스템(GloSea6)의 계절예측 성능 비교 평가

  • Yu-Kyung Hyun (Climate Research Department, National Institute of Meteorological Sciences) ;
  • Jinkyung Park (Climate Research Department, National Institute of Meteorological Sciences) ;
  • Hee-Sook Ji (Climate Research Department, National Institute of Meteorological Sciences) ;
  • Johan Lee (Climate Research Department, National Institute of Meteorological Sciences) ;
  • Beomcheol Shin (Climate Research Department, National Institute of Meteorological Sciences) ;
  • Sang-Min Lee (Climate Research Department, National Institute of Meteorological Sciences) ;
  • Hyun-Ju Lee (Climate Services and Research Division, APEC Climate Center) ;
  • Hyung-Jin Kim (Climate Services and Research Division, APEC Climate Center) ;
  • Yeon-Hee Park (Climate Research Department, National Institute of Meteorological Sciences) ;
  • Ji-Yeong Kim (Climate Research Department, National Institute of Meteorological Sciences) ;
  • Kyung-On Boo (Climate Research Department, National Institute of Meteorological Sciences)
  • 현유경 (국립기상과학원 기후연구부) ;
  • 박진경 (국립기상과학원 기후연구부) ;
  • 지희숙 (국립기상과학원 기후연구부) ;
  • 이조한 (국립기상과학원 기후연구부) ;
  • 신범철 (국립기상과학원 기후연구부) ;
  • 이상민 (국립기상과학원 기후연구부) ;
  • 이현주 (APEC 기후센터 기후사업본부) ;
  • 김형진 (APEC 기후센터 기후사업본부) ;
  • 박연희 (국립기상과학원 기후연구부) ;
  • 김지영 (국립기상과학원 기후연구부) ;
  • 부경온 (국립기상과학원 기후연구부)
  • Received : 2024.10.16
  • Accepted : 2024.10.27
  • Published : 2024.11.30

Abstract

This study aims to assess the performance of climate prediction systems around the world, and understand objective seasonal prediction skill of KMA's GloSea6. Using the 2023 hindcast verification values provided by the WMO Lead Centre for Long-Range Forecast (LC-LRF), we analyzed the skill in the global, East Asia, and European regions. The differences in prediction skill and RMSE between GPC (Global Producing Centers) were very small in this challenging area. Overall, GloSea6 showed the best ACC across variables and periods. Operating this outstanding climate prediction system not only ensures the provision of the best forecasting services but also offers excellent research and development tools. This result also suggests that seasonal forecasting requires different strategies against short- to medium-range forecast to account for climate prediction sources and reduce uncertainties. The skill differences between GloSea6-Seoul and GloSea6-Exeter, especially in high latitude, could be due to differences in snow and soil temperature initialization. Understanding these differences is important for future prediction system development. GPCs that use atmospheric only models instead of coupled, showed the limitations for seasonal predictions. Systems developed a relatively long time ago tended to perform low, suggesting that continuous improvements and upgrades are important. Among variables, SST showed the best prediction skill with the lowest RMSE. Temperature and pressure variables showed practical skill levels, around 0.5. We aimed to quantitatively assess the skills of climate prediction systems, and this assessment can guide the improvement and development of future systems and serve as a reference.

Keywords

Acknowledgement

이 연구는 기상청 국립기상과학원 「기후예측 현업 시스템 개발」(KMA2018-00322)과 「아·태 기후정보서비스 및 연구개발 사업」(KMA2013-07510)의 지원으로 수행되었습니다.

References

  1. Athanasiadis, P. J., A. Bellucci, A. A. Scaife, L. Hermanson, S. Materia, A. Sanna, A. Borrelli, C. MacLachlan, and S. Gualdi, 2017: A multisystem view of wintertime NAO seasonal predictions. J. Climate, 30, 1461-1475, doi:10.1175/JCLI-D-16-0153.1.
  2. Bock, L., A. Lauer, M. Schlund, M. Barreiro, N. Bellouin, C. Jones, G. A. Meehl, V. Predoi, M. J. Roberts, and V. Eyring, 2020: Quantifying progress across different CMIP phases with the ESMValTool. JGR Atmospheres, 125, e2019JD032321, doi:10.1029/2019JD032321.
  3. Bureau of Meteorology, 2022: Seasonal Prediction ACCESS-S2 Hindcast (1981~2018). NCI Australia., doi:10.25914/60627ad0ba3ee.
  4. Chang, P.-H., S.-O. Hwang, S.-H. Choo, J. Lee, S.-M. Lee, and K.-O. Boo, 2021: Global ocean data assimilation and prediction system in KMA: Description and assessment. Atmosphere, 31, 229-240, doi:10.14191/Atmos.2021.31.2.229 (in Korean with English abstract).
  5. Choo, S.-H., P.-H. Chang, S.-O. Hwang, H.-J. Jo, J. Lee, S.-M. Lee, Y.-K. Hyun, and J.-H. Moon, 2021: Assessment of assimilation impact of Argo float observations in marginal seas around Korean Peninsula through observing system experiments. Atmosphere, 31, 283-294, doi:10.14191/Atmos.2021.31.3.283 (in Korean with English abstract).
  6. Davis, P., R. Comer, D. Fereday, J. Knight, S. Kobayashi, C. MacLachlan, A. Scaife, 2018: An improved approach for land-surface initialization in the Met Office's seasonal forecasting system (GloSea). Int. Conf. Subseasonal to Decadal Prediction, 17-21 Sep., NCAR, Boulder CO, USA, [Available online at https://www.wcrp-climate.org/images/WCRP_conferences/S2S_S2D_2018/pdf/Programme/orals/presentations/A5-03_PhilipDavis.pdf].
  7. Duan, W., and C. Wei, 2013: The 'spring predictability barrier' for ENSO predictions and its possible mechanism: results from a fully coupled model. Int. J. Climatol., 33, 1280-1292, doi:10.1002/joc.3513.
  8. Folland, C. K., A. A. Scaife, J. Lindesay, and D. B. Stephenson, 2012: How potentially predictable is northern European winter climate a season ahead? Int. J. Climatol., 32, 801-818, doi:10.1002/joc.2314.
  9. Graham, R. J., and coauthors, 2000: An assessment of seasonal predictability using atmospheric general circulation models. Quart. J. Roy. Meteor. Soc., 126, 2211-2240, doi:10.1002/qj.49712656712.
  10. Graham, R. J., M. Gordon, P. J. McLean, S. Ineson, M. R. Huddleston, M. K. Davey, A. Brookshaw, and R. T. H. Barnes, 2005: A performance comparison of coupled uncoupled versions of the Met Office seasonal prediction general circulation model. Tellus A: Dyn. Meteor. Oceanogr., 57, 320-339, doi:10.3402/tellusa.v57i3.14666.
  11. Ham, H., D. Won, and Y.-S. Lee, 2017: Performance assessment of weekly ensemble prediction data at seasonal forecast system with high resolution. Atmosphere, 27, 261-276, doi:10.14191/Atmos.2017.27.3.261 (in Korean with English abstract).
  12. Ham, H., S.-M. Lee, Y.-K. Hyun, and Y. Kim, 2019: Performance assessment of monthly ensemble prediction data based on improvement of climate prediction system at KMA. Atmosphere, 29, 149-164, doi:10.14191/Atmos.2019.29.2.149 (in Korean with English abstract).
  13. Ham, Y.-G., J.-G. Kim, J.-G. Lee, T. Li, M.-I. Lee, S.-W. Son, and Y.-K. Hyun, 2021: The origin of systematic forecast errors of extreme 2020 East Asian summer monsoon rainfall in GloSea5. Geophys. Res. Lett., 48, doi:10.1029/2021GL094179.
  14. Heo, S.-I., Y.-K. Hyun, Y. Ryu, H.-S. Kang, Y.-J. Lim, and Y. Kim, 2019: An assessment of applicability of heat waves using extreme forecast index in KMA climate prediction system (GloSea5). Atmosphere, 29, 257-267, doi:10.14191/Atmos.2019.29.3.257 (in Korean with English abstract).
  15. Hodson, D. L., R. T. Sutton, and A. A. Scaife, 2023: Signal-to-noise and predictable modes of variability in winter seasonal forecasts. Quart. J. Roy. Meteor. Soc., 149, 2598-2616, doi:10.1002/qj.4522.
  16. Hong, D.-C., H.-S. Park, S.-W. Son, J. Kim, J. Lee, and Y.-K. Hyun, 2023: Downward influences of Sudden Stratospheric Warming (SSW) in GloSea6: 2018 SSW case study. Atmosphere, 33, 493-503, doi:10.14191/Atmos.2023.33.5.493 (in Korean with English abstract).
  17. Hyun, S.-H., S.-O. Hwang, S.-M. Lee, and S.-H. Choo, 2022: Verification of the KMA ocean model NEMO against Argo floats and drift buoys: a comparison with the up-to-date US Navy HYCOM. Atmosphere, 32, 71-84, doi:10.14191/Atmos.2022.32.1.071 (in Korean with English abstract).
  18. Hyun, Y.-K., J. Park, J. Lee, S. Lim, S.-I. Heo, H. Ham, S.-M. Lee, H.-S. Ji, and Y. Kim, 2020: Reliability assessment of temperature and precipitation seasonal probability in current climate prediction systems. Atmosphere, 30, 141-154, doi:10.14191/Atmos.2020.30.2.141 (in Korean with English abstract).
  19. Hyun, Y.-K., and Coauthors, 2022: The KMA Global Seasonal forecasting system (GloSea6) - Part 2: Climatological mean bias characteristics. Atmosphere, 32, 87-101, doi:10.14191/Atmos.2022.32.2.087 (in Korean with English abstract).
  20. Hyun, Y.-K., Y.-H. Park, J. Lee, H.-S. Ji, and K.-O. Boo, 2024: Characteristics of Signal-to-Noise paradox and limits of potential predictive skill in the KMA's Climate Prediction System (GloSea) through ensemble expansion. Atmosphere, 34, 55-67, doi:10.14191/Atmos.2024.34.1.055 (in Korean with English abstract).
  21. Ineson, S., and M. K. Davey, 1997: Interannaul climate simulation and predictability in a coupled TOGA GCM. Mon. Wea. Rev., 125, 721-741, doi:10.1175/1520-0493(1997)125<0721:ICSAPI>2.0.CO;2.
  22. Ji, H.-S., S.-O. Hwang, J. Lee, Y.-K. Hyun, Y. Ryu, and K.-O. Boo, 2022: Assimilation of satellite-based soil moisture (SMAP) in KMA GloSea6: The results of the first preliminary experiment. Atmosphere, 32, 395-409, doi:10.14191/Atmos.2022.32.4.395 (in Korean with English abstract).
  23. Jung, M.-I., S.-W. Son, J. Choi, and H.-S. Kang, 2015: Assessment of 6-month lead prediction skill of the GloSea5 hindcast experiment. Atmosphere, 25, 323-337, doi:10.14191/Atmos.2015.25.2.323 (in Korean with English abstract).
  24. Jung, M.-I., S.-W. Son, Y. Lim, K. Song, D. Won, and H.-S. Kang, 2016: Assessment of stratospheric prediction skill of the GloSea5 hindcast experiment. Atmosphere, 26, 203-214, doi:10.14191/Atmos.2016.26.1.203 (in Korean with English abstract).
  25. Kang, D., M.-I. Lee, J. Im, D. Kim, H.-M. Kim, H.-S. Kang, S. D. Schubert, A. Arribas, and C. MacLachlan, 2014: Prediction of the Arctic Oscillation in boreal winter by dynamical seasonal forecasting systems. Geophys. Res. Lett., 41, 3577-3585, doi:10.1002/2014GL060011.
  26. Kim, D.-K., Y.-H. Kim, and C. Yoo, 2019: Predictability of Northern Hemisphere teleconnection patterns in GloSea5 hindcast experiments up to 6 Weeks. Atmosphere, 29, 295-309, doi:10.14191/Atmos.2019.29.3.295 (in Korean with English abstract).
  27. Kim, H., M.-I. Lee, D. Kim, H.-S. Kang, and Y.-K. Hyun, 2018: Representation of boreal winter MJO and its teleconnection in a dynamical ensemble seasonal prediction system. J. Climate, 31, 8803-8818, doi:10.1175/JCLI-D-18-0039.1.
  28. Kim, H., M. A. Janiga, and K. Pegion, 2019: MJO propagation processes and mean biases in the SubX and S2S reforecasts. J. Geophy. Res. Atmos., 124, 9314-9331, doi:10.1029/2019JD031139.
  29. Kim, H., J. Lee, Y.-K. Hyun, and S.-O. Hwang, 2021: The KMA Global Seasonal Forecasting System (GloSea6) - Part 1: Operational system and improvements. Atmosphere, 31, 341-359, doi:10.14191/Atmos.2021.31.3.341 (in Korean with English abstract).
  30. Kim, J.-Y., Y.-K. Hyun, J. Lee, and B.-C. Shin, 2021: Assessment on the East Asian summer monsoon simulation by improved Global Coupled (GC) model. Atmosphere, 31, 563-476, doi:10.14191/Atmos.2021.31.5.563 (in Korean with English abstract).
  31. Kim, S.-W., H. Kim, K. Song, S.-W. Son, Y. Lim, H.-S. Kang, and Y.-K. Hyun, 2018: Subseasonal-to-Seasonal (S2S) prediction skills of GloSea5 model: Part 1. Geopotential height in the northern hemisphere extratropics. Atmosphere, 28, 233-245, doi:10.14191/Atmos.2018.28.3.233 (in Korean with English abstract).
  32. Kim, S.-W., 2019: Optimal ensemble size for Sub-seasonal to Seasonal (S2S) prediction system. M. S. thesis, Dept. of Earth and Environmental Sciences, Seoul National University, 41 pp.
  33. Kim, T., E. Kim, M. Lee, D.-H. Cha, S.-M. Lee, J. Lee, and K.-O. Boo, 2023: Characteristics of tropical cyclones over the western North Pacific related to extreme ENSO and a climate regime shift in sub-seasonal forecasting with GloSea5. Climate Dyn., 61, 2637-2653, doi:10.1007/s00382-023-06705-x.
  34. KMA, 2015: Long-range Forecast Work Manual. Korea Meteorological Administration, 110 pp [Available online at http://book.kma.go.kr] (in Korean).
  35. KMA, 2017: 2016 Year Book. Korea Meteorological Administration, 612 pp [Available online at http://book.kma.go.kr] (in Korean).
  36. KMA, 2019: 2018 Year Book. Korea Meteorological Administration, 431 pp [Available online at http://book.kma.go.kr] (in Korean).
  37. KMA, 2021: 2020 Year Book. Korea Meteorological Administration, 322 pp [Available online at http://book.kma.go.kr] (in Korean).
  38. KMA, 2023: 2022 Year Book. Korea Meteorological Administration, 413 pp [Available online at http://book.kma.go.kr] (in Korean).
  39. KMA, 2024: 2023 Year Book. Korea Meteorological Administration, 400 pp [Available online at http://book.kma.go.kr] (in Korean).
  40. Lee, J.-H., H. M. Sung, J. Kim, S. Shim, J.-C. Ha, Y.-H. Byun, and Y.-H. Kim, 2021: Assessment of model performance in East Asia based on the CMIP6 multimodel ensemble. J. Climate Change Res., 12, 461-478, doi:10.15531/KSCCR.2021.12.5.461 (in Korean with English abstract).
  41. Lee, J., M.-I. Lee, S. Tak, E. Seo, and Y.-K. Lee, 2023: Assimilation of snow water equivalent from AMSR2 and IMS satellite data utilizing the local ensemble transform Kalman filter. Geosci. Model Dev., doi:10.5194/gmd-2023-221 (preprint / in press).
  42. Lee, M.-I., H.-S. Kang, D. Kim, D. Kim, H. Kim, and D. Kang, 2014: Validation of the experimental hindcasts produced by the GloSea4 seasonal prediction system. Asia-Pac. J. Atmos. Sci., 50, 307-326, doi:10.1007/s13143-014-0019-4.
  43. Lee, S.-J., Y.-K. Hyun, S.-M. Lee, S.-O. Hwang, J. Lee, and K.-O. Boo, 2020: Prediction skill of East Asian summer monsoon indices in KMA Global Seasonal Forecasting System (GloSea5). Atmosphere, 30, 293-309, doi:10.14191/Atmos.2020.30.3.293 (in Korean with English abstract).
  44. Lee, S.-M., H.-S. Kang, Y.-H. Kim, Y.-H. Byun, and C. Cho, 2016: Verification and comparison of forecast skill between global seasonal forecasting system version 5 and unified model during 2014. Atmosphere, 26, 59-72, doi:10.14191/Atmos.2016.26.1.059 (in Korean with English abstract).
  45. Lee, S.-M., J. Lee, A.-R. Ko, Y.-K. Hyun, and Y. Kim, 2020: Seasonal forecasting of tropical storms using GloSea5 hindcast. Atmosphere, 30, 209-220, doi:10.14191/Atmos.2020.30.3.209 (in Korean with English abstract).
  46. Lee, S.-M., Y.-K. Hyun, B. Shin, H. Ji, J. Lee, S.-O. Hwang, and K.-O. Boo, 2024: The seasonal forecast characteristics of tropical cyclones from the KMA's Global Seasonal Forecasting System (GloSea6-GC3.2). Atmosphere, 34, 97-106. doi:10.14191/Atmos.2024.34.2.097 (in Korean with English abstract).
  47. Lim, S.-M., Y.-K. Hyun, H.-S. Kang, and S.-W. Yeh, 2018: Prediction skill of East Asian precipitation and temperature associated with El Nino in GloSea5 hindcast data. Atmosphere, 28, 37-51, doi:10.14191/Atmos.2018.28.1.037 (in Korean with English abstract).
  48. Lim, S.-M., Y.-K. Hyun, H. Ji, and J. Lee, 2021: Application of land initialization and its impact in KMA's operational climate prediction system. Atmosphere, 31, 327-340, doi:10.14191/Atmos.2021.31.3.327 (in Korean with English abstract).
  49. Lockwood, J. F., and Coauthors, 2022: Predictability of European winter 2020/2021: Influence of a mid-winter sudden stratospheric warming. Atmos. Sci. Lett., 23, e1126, doi:10.1002/asl.1126.
  50. MacLachlan, C., and Coauthors, 2015: Description of GloSea5: The Met Office high resolution seasonal forecast system. Quart. J. Roy. Meteor. Soc., 141, 1072-1084, doi:10.1002/qj.2396.
  51. McPhaden, M. J., 2003: Tropical pacific ocean heat content variations and ENSO persistence barriers. Geophys. Res. Lett., 30, 1480, doi:10.1029/2003GL016872.
  52. Moon, J.-Y., K.-Y. Kim, J.-A. Cho, Y.-M. Yang, Y.-K. Hyun, and B.-J. Kim, 2022: Assessment of MJO simulation with Global Coupled (GC) model 2 and 3.1. Atmosphere, 32, 235-246, doi:10.14191/Atmos.2022.32.3.235 (in Korean with English abstract).
  53. Murray, R., 1970: Recent developments in long-range forecasting in the Meteorological Office. Quart. J. Roy. Meteor. Soc., 96, 329-336, doi:10.1002/qj.49709640817.
  54. NIMS, 2024: Evaluation of the 2023 Forecasts Performance of the Operational Climate Prediction System (GloSea6). National Institute of Meteorological Sciences, 71 pp [Available online at http://book.kma.go.kr] (in Korean).
  55. Oh, J., S.-W. Son, and S.-Y. Back, 2022: Influence of UTLS Ozone on the QBO-MJO connection: A case study using the GloSea5 model. Atmosphere, 32, 223-233, doi:10.14191/Atmos.2022.32.3.223 (in Korean with English abstract).
  56. Palmer, T. N., and Coauthors, 2004: Development of a European multimodel ensemble system for seasonal-to-interannual prediction (DEMETER). Bull. Amer. Meteor. Soc., 85, 853-872, doi:10.1175/BAMS-85-6-853.
  57. Park, H.-S., J. Lee, S.-M. Lee, S.-O. Hwang, and K.-O. Boo, 2023: Global ocean data assimilation and prediction system 2 in KMA: Operational system and improvements. Atmosphere, 33, 423-440, doi:10.14191/Atmos.2023.33.4.423 (in Korean with English abstract).
  58. Park, S., D.-J. Kim, S.-W. Lee, K.-W. Lee, J. Kim, E.-J. Song, and K.-H. Seo, 2017: Comparison of extended medium-range forecast skill between KMA ensemble, ocean coupled ensemble, and GloSea5. Asia-Pac. J. Atmos. Sci., 53, 393-401, doi:10.1007/s13143-017-0035-2.
  59. Park, Y.-H., Y.-K. Hyun, S.-I. Heo, and H.-S. Ji, 2021; Assessment of the prediction performance of ensemble size-related in GloSea5 hindcast data. Atmosphere, 31, 511-523. doi:10.14191/Atmos.2021.31.5.511 (in Korean with English abstract).
  60. Scaife, A. A., and Coauthors, 2014; Skillful long-range prediction of European and North American winters. Geophys. Res. Lett., 41, 2514-2519, doi:10.1002/2014GL059637.
  61. Scaife, A. A., and Coauthors, 2016: Seasonal winter forecasts and the stratosphere. Atmos. Sci. Lett., 17, 51-56. doi:10.1002/asl.598.
  62. Seo, E., M.-I. Lee, J.-H. Jeong, H.-S. Kang, and D. Won, 2016: Improvement of soil moisture initialization for a Global Seasonal Forecast System. Atmosphere, 26, 35-45, doi:10.14191/Atmos.2016.26.1.035 (in Korean with English abstract).
  63. Seo, E., and Coauthors, 2019: Impact of soil moisture initialization on boreal summer subseasonal forecasts: mid-latitude surface air temperature and heat wave events. Climate Dyn., 52, 1695-1709, doi:10.1007/s00382-018-4221-4.
  64. Sheshadri, A., M. Borrus, M. Yoder, and T. Robinson, 2021: Midlatitude error growth in atmospheric GCMs: The role of eddy growth rate. Geophys. Res. Lett., 48, e2021GL096126. doi:10.1029/2021GL096126.
  65. Singh, D., M. Ting, A. A. Scaife, and N. Martin, 2018: California Winter Precipitation Predictability: Insights from the Anomalous 2015~2016 and 2016~2017 Seasons. Geophys. Res. Lett., 45, 9972-9980, doi:10.1029/2018GL078844.
  66. Son, S.-W., H. Kim, K. Song, S.-W. Kim, P. Martineau, Y.-K. Hyun, and Y. Kim, 2020: Extratropical prediction skill of the Subseasonal-to-Seasonal (S2S) prediction models. J. Geophys. Res. Atmospheres, 125, e2019-JD031273, doi:10.1029/2019JD031273.
  67. Song, K., H. Kim, S.-W. Son, S.-W. Kim, H.-S. Kang, and Y.-K. Hyun, 2018: Subseasonal-to-Seasonal (S2S) prediction of GloSea5 model: Part 2. Stratospheric Sudden Warming. Atmosphere, 28, 123-139, doi:10.14191/Atmos.2018.28.2.123 (in Korean with English abstract).
  68. Stan, C., 2022: The forecast skill of the Northern Hemisphere middle latitudes seasonal oscillation and its impact on the surface air temperature. Geophys. Res. Lett., 49, e2021GL095543, doi:10.1029/2021GL095543.
  69. Torrence, C., and P. J. Webster, 1998: The annual cycle of persistence in the El Nino-Southern oscillation. Quart. J. Roy. Meteor. Soc., 124, 1985-2004, doi:10.1002/qj.49712455010.
  70. Webster, P. J., and S. Yang, 1992: Monsoon and ENSO: Selectively interactive systems. Quart. J. Roy. Meteor. Soc., 118, 877-926, doi:10.1002/qj.49711850705.
  71. Webster, P. J., 1995: The annual cycle and the predictability of the tropical coupled ocean-atmosphere system. Meteor. Atmos. Phys., 56, 33-55, doi:10.1007/BF01022520.
  72. Wedd, R., and Coauthors, 2022: ACCESS-S2: the upgraded Bureau of Meteorology multi-week to seasonal prediction system. J. So. Hemisph. Earth, 72, 218-242, doi:10.1071/ES22026.
  73. WMO, 2024: 2023 Climate State Report. World Meteorological Organization, 47 pp.