DOI QR코드

DOI QR Code

Analysis of Atmospheric Pattern in May at Yangpyeong, Korea Based on the Radiosonde Measurement

라디오존데 관측을 활용한 양평지역 5월 대기 특성 분석

  • Ja-Ho Koo (Department of Atmospheric Sciences, Yonsei University) ;
  • Sangjun Kim (Department of Atmospheric Sciences, Yonsei University) ;
  • Hyeogdo Kweon (Department of Atmospheric Sciences, Yonsei University) ;
  • Seonggyun Na (Department of Atmospheric Sciences, Yonsei University) ;
  • U-Ju Shin (Department of Atmospheric Sciences, Yonsei University) ;
  • Je-Woo Hong (Korea Environmental Institute) ;
  • Hyojun Sunwoo (Department of Atmospheric Sciences, Yonsei University) ;
  • Hyeji Cha (Department of Atmospheric Sciences, Yonsei University) ;
  • Myoung-Joo Lee (Weather Vision) ;
  • Jinkyu Hong (Department of Atmospheric Sciences, Yonsei University) ;
  • Jhoon Kim (Department of Atmospheric Sciences, Yonsei University)
  • Received : 2024.08.29
  • Accepted : 2024.09.20
  • Published : 2024.11.30

Abstract

We analyzed 3 radiosonde measurements in May at Yangpyeong (10 May 2019, 19 May 2023, and 10 May 2024), as conducted for the educational purpose. While the number of measurements is limited, we find interesting features using these measured data. First, the Modern-Era Retrospective Analysis for Research and Applications version 2 (MERRA-2) reanalysis data at the same time at Yangpyeong show the similar vertical temperature profile to that of radiosonde measurements. Vertical profiles of wind speed and relative humidity from the MERRA-2 data also look similar to those of radiosonde measurements, but the consistency was not much guaranteed in the upper atmosphere (higher than 5 km altitude). Second, the temperature profile from the radiosonde measurement and MERRA-2 dataset at Yangpyeong (located in the east of Seoul) is very analogous to that from the radiosonde measurement at Osan (located in the south of Seoul). Considering that the straight distance between Yangpyeong and Osan is about 60 km, the consistency of temperature profile is remarkable. Vertical wind profile is also generally similar between two regions, but the gap becomes larger as the altitude goes up. While the vertical profile of relative humidity is somewhat different between two regions, the vertical profile of water vapor mixing ratio derived from the relative humidity is rather similar between two regions. This study shows that only small number of additional radiosonde measurements enable us much better evaluation of regional meteorology in a vertical scale.

Keywords

Acknowledgement

이 성과는 연세대학교 대기과학과 실험실습비 재원 및 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(RS-2023-00219830).

References

  1. Balogh, B., D. Saint-Martin, and A. Ribes, 2021: A toy model to investigate stability of AI-based dynamical systems. Geophys. Res. Lett., 48, e2020GL092133, doi:10.1029/2020GL092133.
  2. Bednar, H., and H. Kantz, 2022: Prediction error growth in a more realistic atmospheric toy model with three spatiotemporal scales. Geosci. Model Dev., 15, 4147-4161, doi:10.5194/gmd-15-4147-2022.
  3. Carvalho, D., 2019: An assessment of NASA's GMAO MERRA-2 reanalysis surface winds. J. Climate, 32, 8261-8281, doi:10.1175/JCLI-D-19-0199.1.
  4. Dirksen, R., and Coauthors, 2024: Report of WMO's 2022 Upper-Air instrument intercomparison campaign. World meteorological organization instruments and observin methods report, No. 143, 140 pp.
  5. Gelaro, R., and Coauthors, 2017: The Modern-Era retrospective analysis for research and applications, Version 2 (MERRA-2). J. Climate, 30, 5419-5454, doi:10.1175/JCLI-D-16-0758.1.
  6. GMAO, 2015: inst3 3d asm Cp: MERRA-2 3D IAU State, Meteorology Instantaneous 3-hourly (p-coord, 0.625x0.5L42), version 5.12.4, Greenbelt, MD, USA: Goddard Space Flight Center Distributed Active Archive Center (GSFC DAAC). Accessed in 1 June 2024, Global Modeling and Assimilation Office, doi:10.5067/VJAFPLI1CSIV.
  7. Jang, M., C.-H. You, J.-B. Jee, S.-H. Park, S.-I. Kim, and Y.-J. Choi, 2016: Three-dimensional analysis of heavy rainfall using KLAPS re-analysis data. Atmosphere, 26, 97-109, doi:10.14191/Atmos.2016.26.1.097.
  8. Kang, H., J. Kim, M. Park, and S. An, 2024: Radiosonde observation using general purpose radio receiving instruments. Atmosphere, 34, 325-336, doi:10.14191/Atmos.2024.34.3.325.
  9. Kim, H., and Coauthors, 2020: Factors controlling surface ozone in the Seoul Metropolitan Area during the KORUS-AQ campaign. Elem. Sci. Anth., 8, 46, doi:10.1525/elementa.444.
  10. Kim, H. C., and Coauthors, 2017: Recent increase of surface particulate matter concentrations in the Seoul Metropolitan Area, Korea. Sci. Rep., 7, 4710, doi:10.1038/s41598-017-05092-8.
  11. Kim, K.-H., Y.-H. Kim, and D.-E. Chang, 2009a: The Analysis of Changma structure using radiosonde observational data from KEOP-2007: Part I. the Assessment of the radiosonde data. Atmosphere, 19, 213-226.
  12. Kim, K.-H., Y.-H. Kim, and D.-E. Chang, 2009b: The Analysis of Changma structure using radiosonde observational data from KEOP-2007: Part II. The dynamic and thermodynamic characteristics of Changma in 2007. Atmosphere, 19, 297-307.
  13. Kim, S., and Coauthors, 2018: The controlling factors of photochemical Ozone production in Seoul, South Korea. Aerosol Air Qual. Res. 18, 2253-2261, doi:10.4209/aaqr.2017.11.0452.
  14. Koo, J.-H., and Coauthors, 2024: The analysis of summertime tropospheric Ozone at anmyeon using Ozonesonde measurements in 2021~2022. J. Korean Soc. Atmos. Environ., 40, 373-383, doi:10.5572/KOSAE.2024.40.3.373.
  15. Lee, T., S. Go, Y. G. Lee, S. S. Park, J. Park, and J.-H. Koo, 2022: Temporal variability of surface air pollutants in megacities of South Korea. Front. Environ. Sci., 10, 915531, doi:10.3389/fenvs.2022.915531.
  16. Li, Z., X. Yang, C. Zhao, and T. Fan, 2021: Ratio of PM2.5 to PM10 mass concentrations in Beijing and relationships with pollution from the North China plain. Asia-Pac. J. Atmos. Sci., 57, 421-434, doi:10.1007/s13143-020-00203-4.
  17. Luo, B., P. J. Minnett, M. Szczodrak, N. R. Nalli, and V. R. Morris, 2020: Accuracy assessment of MERRA-2 and ERA-Interim sea surface temperature, air temperature, and humidity profiles over the atlantic ocean using AEROSE measurements. J. Climate, 33, 6889-6909, doi:10.1175/JCLI-D-19-0955.1.
  18. Meteomodem, 2024: Homepage. Accessed 21 August 2024, [Available online at https://www.meteomodem.com].
  19. Pan, L. L., S. H. Honomichl, T. V. Bui, T. Thornberry, A. Rollins, E. Hintsa, and R. J. Jensen, 2018: Lapse rate or cold point: The tropical tropopause identified by in situ trace gas measurements. Geophys. Res. Lett., 45, 10756-10763, doi:10.1029/2018GL079573.
  20. Seidel, D. J., R. J. Ross, J. K. Angell, and G. C. Reid, 2001: Climatological characteristics of the tropical tropopause as revealed by radiosondes. J. Geophys. Res., 106, 7857-7878, doi:10.1029/2000JD900837.
  21. WMO, 1957: Meteorology-A three dimensional science: Second session of the Commission for Aerology. WMO Bulletin, IV(4), World Meteorological Organization, 134-138.
  22. Yoon, J.-H., and K.-H. Min, 2016: Characteristic analysis of multicell convective system that occurredon 6 August 2013 over the Korean peninsula. Atmosphere, 26, 321-336, doi:10.14191/Atmos.2016.26.2.321.