DOI QR코드

DOI QR Code

고해상도 수치모델을 이용한 한반도 토네이도성 돌풍 사례에 대한 종관 및 중규모 발생 메커니즘 연구

Synoptic and Meso Scale Mechanisms of Reported Tornado-like Gust Wind Event in Korea Using High-resolution Numerical Simulation

  • 변가영 (서울대학교 지구환경과학부) ;
  • 김정훈 (서울대학교 지구환경과학부) ;
  • 박이준 (서울대학교 지구환경과학부)
  • Ka-young Byen (School of Earth and Environmental Sciences, Seoul National University) ;
  • Jung-Hoon Kim (School of Earth and Environmental Sciences, Seoul National University) ;
  • Yi-June Park (School of Earth and Environmental Sciences, Seoul National University)
  • 투고 : 2024.07.05
  • 심사 : 2024.09.19
  • 발행 : 2024.11.30

초록

Reported tornado event occurred in Dangjin, Chungcheongnam-do at 0650~0730 UTC on 15 March 2019 was examined using Weather Research and Forecasting model with four nested domains (dx = 5, 1, 0.2, and 0.05 km). From synoptic analysis in ERA5 reanalysis data, eastward moving upper-level trough was developed rapidly in the Yellow Sea. Strong tropopause folding with Potential Vorticity Unit (PVU) higher than 1.5 PVU moved downward to 600-hPa level in mid troposphere following the trough over the location of tornado event. Under this large-scale background condition, surface front developed very intensively in the west coast of Korea along with strong low-level jet and moisture band at 850-hPa level. In domain 2, the maximum Bulk wind shear at Dorido point was 12.86 m s-1. Cold front evolved to be a comma cloud with upper-level trough and strong bulk vertical shear near Dangjin, which include eastward moving gust front revealed as a strong horizontal temperature gradient and convergence near the surface. In domains 3 and 4, the local maximum value of the simulated vertical vorticity (24 × 10-2 s-1) with strong updraft (8.18 m s-1) near the observed tornado event along with the surface gust front was found to be a possible area for tornadogenesis from the x-z and time-z cross-sections near the simulated tornado event. In the vorticity budget analysis, the local maximum of vertical vorticity during this event was generated significantly by tilting and stretching forcings.

키워드

과제정보

논문의 질을 향상시키는데 많은 도움을 주신 두 익명의 심사위원 분들께 진심으로 감사드립니다. 또한, 논문의 작성을 위해 많은 도움을 주신 서울대학교 지구환경과학부 백종진 교수님, 손석우 교수님께 감사를 드립니다. 그리고, 서울대 예보분석응용실험실 동료분들과 기상청 총괄예보관의 허진호 수석 전문관님 이하 동료분들께도 감사의 인사를 드립니다. 이 연구에 참여한 김정훈 교수와 박이준 연구원의 연구 재원은 기상청 국립기상과학원 「위험기상 분석 및 예보기술 고도화」(KMA2018-00121)와 기상청 「위험기상선제대응 기술개발사업」(RS-2023-00233640)의 지원으로 수행되었습니다.

참고문헌

  1. Agee, E., and E. Jones, 2009: Proposed conceptual for proper identification and classification of tornado events. Wea. Forecasting, 24, 609-617, doi:10.1175/2008WAF2222163.1. 
  2. Chen, F., and J. Dudhia, 2001: Coupling an advanced land Surface-Hydrology model with the penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569-585, doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2. 
  3. Chen, J., X. Cai, H. Wang, L. Kang, H. Zhang, Y. Song, H. Zhu, W. Zheng, and F. Li, 2018: Tornado climatology of China. Int. J. Climatol, 38, 2478-2489, doi:10.1002/joc.5369. 
  4. Coleman, T. A., and P. G. Dixon, 2014: An objective analysis of tornado risk in the United States. Wea. Forecasting, 29, 366-376, doi:10.1175/WAF-D-13-00057.1. 
  5. Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale Two-Dimensional model. J. Atmos. Sci., 46, 3077-3107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2. 
  6. Edwards, R., J. G. LaDue, J. T. Ferree, K. A. Scharfenberg, C. Maier, and W. L. Coulbourne, 2010: The enhanced Fujita scale: Past, present, and future. Preprints. 25th Conf. on Severe Local Storms, Denver, CO, Amer. Meteor. Soc., 4A.1, 9 pp [Available online at https://www.spc.noaa.gov/publications/edwards/efmtg.pdf]. 
  7. Fujita, T. T., 1971: Proposed characterization of tornadoes and hurricanes by area and intensity. SMRP Research Paper 91, University of Chicago, Chicago, 42 pp. 
  8. Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 1999-2049, doi:10.1002/qj.3803. 
  9. Holton, J. R., and G. J. Hakim, 2013: An introduction to dynamic meteorology. Vol. 88, Academic press, 600 pp. 
  10. Hong, S., and J. Lim, 2006: The WRF Single-Moment 6-Class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129-151. 
  11. Hong, S., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318-2341, doi:10.1175/MWR3199.1. 
  12. Hoskins, B. J., and M. A. Pedder, 1980: The diagnosis of middle latitude synoptic development. Quart. J. Roy. Meteor. Soc., 106, 707-719, doi:10.1002/qj.49710645004. 
  13. Houze, R., 1993: Cloud Dynamics. Academic Press, 573 pp. 
  14. Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shepard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, doi:10.1029/2008JD009944. 
  15. In, S.-R., S.-P. Jung, J. Shim, and B.-C. Choi, 2016: A Mechanism analysis of landspout generation occurred over Ilsan on June 10 2014 using a numerical model. J. Korean Earth Sci. Soc., 37, 187-199, doi:10.5467/JKESS.2016.37.4.187 (in  Korean).
  16. JMA, 2015: Guidelines for the Japanese Enhanced Fujita Scale. Japan Meteorological Agency, 113 pp [Available online at https://www.data.jma.go.jp/obd/stats/data/bosai/tornado/kaisetsu/guideline_en.pdf]. 
  17. Kain, J. S., 2004: The Kain-Fritsch Convective Parameterization: An Update. J. Appl. Meteorol., 43, 170-181, doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2. 
  18. Kim, J.-H., and H.-Y. Chun, 2012: A numerical simulation of convectively induced turbulence above deep convection. J. Appl. Meteor. Climatol., 51, 1180-1200, doi:10.1175/JAMC-D-11-0140.1. 
  19. Kim, K. S., 1992: Encyclopedia of Meteorology. Hyangmunsa, 734 pp (in Korean).
  20. Krocak, M. J., and H. E. Brooks, 2018: Climatological estimates of hourly Tornado probability for the United States. Wea. Forecasting, 33, 59-69, doi:10.1175/wafd-17-0123.1. 
  21. Lee, S. H., and J. B. Lee, 2015: A case study of tornadoes in Korea during the last 5 years. Proceedings of the Autumn Meeting of KMS, Korean Meteorological Society, 714-716 (in Korean). 
  22. Lee, S. H., W. J. Lee, and W. S. Oh, 2019: The reason why the iron roof of the Dangjin Steel Mill was blown away was due to a 'Yong-o-reum'... Does it become more frequent? [Available online at https://news.zum.com/articles/51215269] (in Korean). 
  23. Lee, S. Y., S. K. Park, Y. Xing, and C. J. Kim, 2016: A numerical study on the Goyang Tornado in 10 June 2014 for high resolution WRF model simulation. Proceedings of the Autumn Meeting of KMS, Korean Meteorological Society, 920-921 (in Korean). 
  24. Lee, Y. G., 2019: Local wind and water accidents and our attitude of preparation. Korean Fire Protection Association webzine, [Available online at https://www.kfpa.or.kr/webzine/201909/sub/disasters2.html] (in Korean). 
  25. Mlawer, E. J., S. J., Taubman, P. D., Brown, M. J., Iacono, and S. A., Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. Atmos., 102, 16663-16682, doi:10.1029/97JD00237. 
  26. Orlanski, I., 1975: A rational subdivision of scales for atmospheric processes. Bull. Amer. Meteor. Soc., 56, 527-530, [Available online at http://www.jstor.org/stable/26216020]. 
  27. Park, C., S.-W. Son, and J.-H. Kim, 2021: Role of baroclinic trough in triggering vertical motion during summertime heavy rainfall events in Korea. J. Atmos. Sci., 78, 1687-1702, doi:10.1175/JAS-D-20-0216.1. 
  28. Tochimoto, E., and H. Niino, 2022: Tornadogenesis in a Quasi-Linear convective system over kanto plain in Japan: A numerical case study. Mon. Wea. Rev., 150, 259-282, doi:10.1175/MWR-D-20-0402.1. 
  29. Wang, S., X. Qiao, J. Min, and X. Zhuang, 2019: The impact of stochastically perturbed parameterizations on tornadic supercell cases in East China. Mon. Wea. Rev., 147, 199-220, doi:10.1175/MWR-D-18-0182.1.