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Abstract
With the development of high-throughput technologies for producing genomic data, more advanced statistical

methods such as regularization and machine learning techniques have been adapted to survival analysis. However,
the clinical information such as age, gender and medical history plays a critical role in constructing a survival
prediction model. Machine learning technique such as the support vector machine (SVM) can improve the
predictability of the survival model by using the available clinical information. When implementing SVM for
a predictive survival model, the clinical kernel was proposed by Daemen et al. by equalizing the influence of
clinical variables and taking account of the range of these variables. However, this clinical kernel uses the same
weight for all clinical variables without considering the different effect of those variables on the survival time.
In this study, we proposed a simple kernel, called ensemble kernel, by combining a clinical kernel with model
fitting. Since the proposed ensemble kernel is based on model fitting, two different kernels are considered by
using either Cox model or accelerated failure time (AFT) model. We compare the performance of these two
ensemble kernels with that of the linear kernel and the clinical kernel by the concordance index (C-index) using
the four real data sets. While both linear and clinical kernels use all clinical variables in defining global kernels,
the proposed two ensemble kernels can use only significant variables from either a Cox model or an AFT model.
The comparative result shows that the proposed two ensemble kernels perform similarly as the existing clinical
kernel does and the performance of four kernels vary according to data sets.
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1. Introduction

With the advent of high-throughput genotyping techniques, more advanced statistical methods such
as regularization and machine learning techniques have been adapted to survival analysis. However,
the clinical information such as age, gender, tumor size and the medical history is more critical in
predicting the survival outcome for most diseases and examinations. Furthermore, it has shown that
the clinical variables have similar power as profiles obtained from high-throughput technologies. To
improve the predictability of the survival model, a machine learning technique such as the support
vector machine (SVM) has been widely used by considering non-linear and more complex interactions
between variables. When implementing SVM, the linear kernel function has several disadvantages
as described in Daemen and Moore (2009), and Daemen et al. (2012) because it is based on the
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inner product for one or several variables. The inner product for continuous variables depends on the
variable range (e.g. age from 20 to 80 years vs. Karno score from 0 to 10). For ordinal variables,
the comparison of two patients with value 1 and 2 depends on the range of this variable. These
patients will be less similar when the variable has three levels than when the variable has seven levels.
Furthermore, when an ordinal variable has zero value for a possible category, the inner product for
a patient with value zero will always be zero, independent of its dissimilarity with another patient.
For a nominal variable, the inner product between two patients should only larger than zero when
both patients have the same category. The clinical kernel proposed by Daemen and Moore (2009) and
Daemen et al. (2012) standardizes the scale of continuous and ordinal variables to equally take account
of all variables and then the total clinical kernel matrix is calculated as the sum of the individual kernel
matrices from each clinical variable divided by the total number of clinical variables p.

In this study, we propose to define the global clinical kernel matrix by taking the weighted average
of the individual kernel matrices obtained from each clinical variable, in which the weight is the
absolute value of the effect size of each clinical variable from either the fitted Cox model or an AFT
model. Since the proposed method involves the fitting the model to obtain the effect size of each
clinical variable, the proposed kernel is called ensemble kernel. According to the fitted model, we call
it either the Cox ensemble kernel or the AFT ensemble kernel.

We compare the performance of two proposed ensemble kernels with that of linear and clinical
kernels using the four different real data sets. The proposed ensemble kernels could use either all
clinical variables or the subset of clinical variables by the selection of significant variables whereas the
clinical kernel is supposed to use all variables. Depending on the selection of variables, we consider
three different scenarios for the comparative study. In Scenario I, all clinical variables are considered,
in Scenario II, only significant variables in a Cox model are considered, and in Scenario III, only
significant variables in an AFT model are considered. For the comparison of the performance, data set
is divided into training and test sets with 2 : 1 ratio and for the variable selection process, 5-fold-cross
validation were implemented in Scenarios II and III. In addition, the performance of each kernel is
compared by the coincidence index (C-Index) (Harrel et al., 1982) using the four different clinical
data sets.

2. Methods

Let kx(i, j) be the clinical kernel of clinical variable x between the individual i and j. The clinical
kernel is defined as

kx(i, j) =
(max−min) − |xi − x j|

(max−min)
,

when a clinical variable x is continuous or an ordinary and

kx(i, j) =

 1, if xi = x j,

0, if xi , x j,

when a clinical variable x is nominal. These clinical kernels are combined as a global and heterogeneous
kernel matrix, K(i, j) = (1/p)

∑p
l=1 kxl(i, j). Here the global kernel matrix is the sum of the individual

clinical kernel divided by the number of variables.
We propose to take the weighted average of the individual clinical kernel, in which the weight is the
effect size of each clinical variable from the fitted model. For example, the effect of the lth clinical
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Table 1: The covariate information of randomly selected three individuals from a dataset of pancreatic cancer

ID Alcohol history Postoperative Sex Maximum tumor N stage
15 No Yes Male 4.6 3
42 Yes No Female 5.0 1
49 No Yes Female 3.2 1

variable is estimated as βl from a Cox model. Then the ensemble global kernel matrix is defined as
K(i, j) = (

∑p
l=1 |βl|kxl(i, j))/

∑p
l=1 |βl| between the individual i and j.

We propose two different ensemble kernels, called a Cox ensemble kernel and an AFT ensemble
kernel according to the fitted model and compare the performance of these two ensemble kernels with
that of linear kernel and clinical kernel using the four real data sets.
Here we compare the proposed ensemble kernels with the clinical kernel with an example. Suppose
that we randomly select three individuals from a dataset of pancreatic cancer and their information is
given in the Table 1.

Among five covariates, only one variable, maximum tumor, is continuous and the other four
variables are categorical variables. The corresponding clinical kernel function to each covariate is
defined as follows:

K1 =

1 0 1
0 1 0
1 0 1

 , K2 =

1 0 1
0 1 0
1 0 1

 , K3 =

1 0 0
0 1 1
0 1 1

 , K4 =

 1 0.96 0.86
0.96 1 0.82
0.86 0.82 1

 , K5 =

1 0 0
0 1 1
0 1 1

 .
Here K1, K2, K3, K4 and K5 are the clinical kernel functions corresponding to alcohol history, postoperative,
sex, maximum tumor and N stage, respectively. Then the clinical global kernel matrix is the average
of these five kernel functions given as

Kcli =
K1 + K2 + K3 + K4 + K5

5
=

 1 0.1920 0.5720
0.1920 1 0.5640
0.5720 0.5640 1

 .
On the other hand, a Cox ensemble kernel and the an AFT ensemble kernel are given as

KCox =
1.2814K1 + 1.3718K2 + 0.8209K3 + 0.2191K4 + 0.2545K5

3.9477
=

 1 0.0533 0.7198
0.0533 1 0.3179
0.7198 0.3179 1

 .

KAFT =
0.6074K1 + 0.5742K2 + 0.3212K3 + 0.0993K4 + 0.2380K5

1.8401
=

 1 0.0518 0.6886
0.0518 1 0.3481
0.6886 0.3481 1

 .
When comparing the elements of three global kernel matrices, those of the Cox ensemble kernel and
the AFT ensemble kernel have the similar values while those of the clinical global kernel matrix are
different from the previous two ensemble kernels. For example, the kernel value between the patient
having ID of 15 and one having ID of 42 is 0.1920 in the clinical kernel whereas the corresponding
values are 0.0533 and 0.0518 in the Cox ensemble and the AFT ensemble kernels, respectively.
These two patients have different values for alcohol history, postoperative, sex and N stage except
for maximum tumor size as shown in Table 1. Therefore, the closeness of these two patients should
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Table 2: Comparison of test C-index under three scenarios I, II and III

Data set Kernel
Scenario I Scenario II Scenario III

train C-index test C-index train C-index test C-index train C-index test C-index
mean (sd) mean (sd) mean (sd) mean (sd) mean (sd) mean (sd)

Pancreatic

Linear 0.6539 (0.0782) 0.6206 (0.0655) 0.6628 (0.0869) 0.6305 (0.0705) 0.6560 (0.0841) 0.6220 (0.0650)
Clinical 0.7648 (0.0369) 0.6909 (0.0566) 0.7686 (0.0425) 0.6775 (0.0604) 0.7685 (0.0360) 0.6811 (0.0541)

Cox sensemble 0.7525 (0.0392) 0.6814 (0.0559) 0.7635 (0.0472) 0.6653 (0.0616) 0.7603 (0.0366) 0.6709 (0.0557)
AFT ensemble 0.7542 (0.0376) 0.6794 (0.0344) 0.7604 (0.0467) 0.6678 (0.0625) 0.7604 (0.0344) 0.6711 (0.0573)

Veteran

Linear 0.7154 (0.0170) 0.6998 (0.0397) 0.7149 (0.0169) 0.7008 (0.0350) 0.7146 (0.0173) 0.7002 (0.0342)
Clinical 0.7909 (0.0337) 0.6967 (0.0383) 0.7605 (0.0284) 0.6942 (0.0371) 0.7607 (0.0245) 0.6965 (0.0370)

Cox ensemble 0.7741 (0.0318) 0.6967 (0.0383) 0.7588 (0.0255) 0.6949 (0.0371) 0.7599 (0.0228) 0.6961 (0.0392)
AFT ensemble 0.7760 (0.0168) 0.6960 (0.0388) 0.7582 (0.0254) 0.6945 (0.0368) 0.7592 (0.0250) 0.6954 (0.0388)

Lung

Linear 0.5325 (0.0168) 0.5255 (0.0389) 0.5653 (0.0415) 0.5559 (0.0455) 0.5616 (0.0390) 0.5598 (0.0486)
Clinical 0.6678 (0.0201) 0.6407 (0.0325) 0.6670 (0.0208) 0.6316 (0.0341) 0.6690 (0.0229) 0.6304 (0.0369)

Cox ensemble 0.6611 (0.0207) 0.6348 (0.0339) 0.6612 (0.0197) 0.6292 (0.0348) 0.6623 (0.0233) 0.6268 (0.0375)
AFT ensemble 0.6619 (0.0154) 0.6347 (0.0338) 0.6622 (0.0210) 0.6282 (0.0347) 0.6638 (0.0230) 0.6264 (0.0362)

Melanoma

Linear 0.8775 (0.0251) 0.8802 (0.0314) 0.8776 (0.0154) 0.8804 (0.3130) 0.8775 (0.0154) 0.8802 (0.0314)
Clinical 0.8984 (0.0161) 0.8532 (0.0258) 0.8965 (0.0284) 0.8576 (0.0264) 0.8987 (0.0315) 0.8526 (0.0271)

Cox ensemble 0.8795 (0.0161) 0.8750 (0.0311) 0.8843 (0.0171) 0.8821 (0.0332) 0.8803 (0.0167) 0.8780 (0.0313)
AFT ensemble 0.8792 (0.0161) 0.8731 (0.0315) 0.8842 (0.0159) 0.8824 (0.0323) 0.8803 (0.0162) 0.8775 (0.0320)

∗ Bold number represents the maximum C-index among four kernels

be very low based on the covariates and the two ensemble kernels reflect this difference more than
the clinical kernel. On the other hand, the kernel value between the patient having ID of 15 and one
having of ID 49 is 0.5720 in the clinical kernel whereas the corresponding values are 0.7198 and
0.6886 in the Cox ensemble and the AFT ensemble kernels, respectively. As shown on Table 1, these
two patients belong to the same categories of alcoholic history and postoperative though they are
male and female, have different N stages. The covariates of alcohol history and postoperative have the
significant effect on the survival time with p-values of less than 0.05 while sex, N stage and maximum
tumor have no significant effect. The large values in the Cox ensemble and the AFT ensemble kernels
show the closeness between the patients having ID 15 and one having of ID 49 more than that in the
clinical kernel. Since the variable selection process is implemented for fitting either a Cox model
or an AFT model, we consider three different scenarios for the comparative study. In scenario I, all
clinical variables were included, only a subset of variables selected from a Cox model is included in
scenario II, and only a subset of variables selected from an AFT model is included in scenario III,
respectively. For the variable selection process, 5-fold-CV is applied because the sample size is not
enough for some data sets. In addition, this process was repeated 100 times and the value of C-index
for the validation and test set is the average over 100 repeated samples.

3. Results

For the comparison study, we analysed four different datasets under three different scenarios described
in the pervious section. Four datasets are the pancreatic cancer (Mok et al., 2019), lung cancer
(Kalbfleisch and Prentice, 1980), veteran’s lung cancer (Loprinzi et al., 1994) and melanoma (Andersen
et al., 1993) datasets. The pancreatic cancer data consists of 124 patients with 13 covariates, among
which 73 patients were dead and 51 patients were alive at the end of study. The lung cancer data
consists of 228 patients with 7 covariates, among which 165 patients were dead and 63 patients were
censored. The veteran’s lung cancer dataset has 137 patients with 6 covariates, among which 128
patients were dead and 9 patients were censored. Finally melanoma data consists of 205 patients,
among which 57 patients were dead and 148 patients were censored.
We compare the performance of four different kernels under the three different scenarios using four
datasets. Four different kernels are linear, clinical, Cox ensemble and AFT ensemble kernels. As
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Table 3: Selected variables in a Cox model (Scenario II)

Data set Variable (selection frequency among 100 repetitions)

Pancreatic
T Stage(43), alcohol history(36), history of chronic pancreatitis(41), history of diabetes(45),
person neoplasm cancer status(87), postoperative(95), N Stage(50), tobacco smoking history(54),
maximum tumor dimension(54), radiation therapy(52), residual tumor(24), Age(100), Sex(100)

Veteran karno(100), celltype(69), diagtime(43), trt(35), prior(32), Age(100)
Lung ph.ecog(74), pat.karno(81), ph.karno(58), wt.loss(54), meal.cal(51), Age(100), Sex(100)
Melanoma year(100), tickness(50), ulcer(17), Age(100), Sex(100)

Table 4: Selected variables in an AFT model (Scenario III)

Data set Variable (selection frequency among 100 repetitions)

Pancreatic
T Stage(51), alcohol history(42), history of chronic pancreatitis(42), history of diabetes(34),
person neoplasm cancer status(87), postoperative(99), N Stage(49), tobacco smoking history(58),
maximum tumor dimension(53), radiation therapy(57), residual tumor(26), Age(100), Sex(100)

Veteran karno(100), celltype(78), diagtime(44), trt(46), prior(39), Age(100)
Lung ph.ecog(76), pat.karno(76), ph.karno(46), wt.loss(46), meal.cal(52), Age(100), Sex(100)
Melanoma year(100), tickness(47), ulcer(42), Age(100), Sex(100)

described in the previous section, all covariates were included in scenario I, only a subset of covariates
were included in either scenario II or scenario III, in which only significant variables were selected
under either a Cox model or an AFT model, respectively. Due to the possibly biased randomization
when dividing whole data into training and test sets, we repeated this process 100 times and took an
average of C-indices over 100 repetitions. Since a subset of selected variables may be different across
100 repetitions, we record how many times each variable was selected in the fitted model for scenarios
II and III, in which both age and sex were always included. As shown in Table 2, the performance of
both Cox and AFT ensemble kernels seems to be similar as that of clinical and linear kernels across
three scenarios. When all covariates were considered in scenario I, either linear or clinical kernels
always perform better than the proposed two ensemble kernels though the difference in C-index is not
significantly different. In scenario II, an AFT ensemble kernel performs better than either linear or
clinical kernels for the melanoma data while either linear or clinical kernels perform slightly better
than the two ensemble kernels under scenario III. Since a subset of selected variables may be different
across 100 repetitions, we record how many times each variable was selected in the fitted model for
scenarios II and III, in which both age and sex were always included. These results are listed for a Cox
model and an AFT model in Tables 3 and 4, respectively. As shown in Tables 3 and 4, the selection
frequency of each covariate seems to be similar in two models except for the covariate of ‘ulcer’, the
corresponding selection frequencies are 17 in a Cox model and 42 in an AFT model, respectively. In
conclusion, the proposed ensemble kernels show the similar performance as the existing linear and
clinical kernels and their C-index varies from 0.5255 to 0.8802 according to different datasets.

4. Discussion

We propose the two ensemble kernels, called a Cox ensemble and an AFT ensemble kernels, and
compare their performance with that of the existing kernels such as linear and clinical kernels using
the four real datasets. The clinical kernel considers the characteristic of clinical variables as well as
their different range, and the closeness between individuals is well measured by the global kernel
matrix by standardizing the effect of various clinical variables. However, the clinical kernel regards
all clinical variables uniformly and uses the same weight on the global kernel matrix. On the other
hand, the proposed ensemble kernels use the effect size of covariates as the weight on the global kernel
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matrix. Therefore, both a model fitting and a variable selection process are required for the proposed
ensemble kernels. From the comparison result, both a Cox ensemble and an AFT ensemble kernels
do not overpass the existing kernels except for one case but their performance is similar to the clinical
kernel in terms of test C-index in most cases. However, this comparative study has limitations in that
only four real data sets are analyzed. For more appropriate comparative study, an extensive simulation
study is needed for further research.
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