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Abstract
This study investigates the Charlier series approximation for modeling nonhomogeneous Poisson processes.

It focuses on mixtures of Poisson distributions and Markov-Modulated Poisson processes to address complex
temporal data patterns, such as hospital admission rates. The Charlier series approximation is constructed by ex-
panding probability mass functions using Charlier orthogonal polynomials, which allow for adjustments to reflect
higher-order moments like skewness and kurtosis. These polynomials are combined with a Poisson weight func-
tion to create flexible approximations tailored to the variability in event rates. Two artificial examples demonstrate
the method’s effectiveness in capturing dynamic event behaviors. A real-world application to hospital admission
data further highlights its practical utility. Performance is assessed using Kullback-Leibler divergence, quantify-
ing the improvement over simple Poisson models. The results show that the Charlier series provides enhanced
data fitting and deeper insights into complex probabilistic structures.

Keywords: nonhomogeneous Poisson process, Charlier series approximation, Markov-Modulated
Poisson process, mixture of Poisson distributions, hospital admissions data

1. Introduction

1.1. Motivation

Nonhomogeneous Poisson processes are essential statistical tools that model events over time where
the occurrence rate varies, making them vital in many scientific fields. Traditional Poisson process
models require a constant occurrence rate and may not capture complex event variability, often leading
to oversimplified or inaccurate models. This limitation is pronounced in cases of overdispersion or
underdispersion, where the variance differs significantly from the mean, affecting the accuracy and
reliability of the predictions.

Charlier polynomials, traditionally linked with the Poisson distribution, present a promising solu-
tion by allowing adjustments to the probability mass function through expansions (Kokonendji et al.,
2010). These adjustments can better align the model with empirical data, particularly by addressing
variance misestimations. The flexibility of Charlier polynomial coefficients to reflect the skewness
and kurtosis of real-world data enhances the ability to fit the model (Fokianos et al., 2009).
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This study addresses the need that Charlier polynomial series approximation accommodates com-
plex variability in event rates. Although Charlier expansions have been effectively used in homoge-
neous settings, their application to nonhomogeneous Poisson processes with time-varying rates re-
mains underexplored. This paper contributes by integrating Charlier polynomial series with Poisson
processes, thereby enhancing the statistical modeling capabilities for complex time-varying systems.
This integration not only refines distributional attributes such as skewness and kurtosis but also im-
proves the models’ adaptability and accuracy.

2. Theoretical background

2.1. Nonhomogeneous Poisson processes

Nonhomogeneous Poisson processes are sophisticated stochastic models designed to represent event
occurrences where the rate, λ(t), varies with time or space. In contrast to homogeneous Poisson
processes, which assume constant rates, non-homogeneous Poisson processes use a time-dependent
intensity function, λ(t), to provide a more realistic representation of scenarios where event probabil-
ities are not static but fluctuate. Two common models for nonhomogeneous Poisson processes are
the mixture of Poisson processes and the Markov-Modulated Poisson process (Karlis, 2005). These
models provide sophisticated methods for handling data that exhibit varying event rates over time or
space, which are not adequately captured by the homogeneous Poisson process.

The mixture of Poisson processes is a statistical model that combines multiple Poisson processes,
each with its own rate parameter, into a single process. This approach is particularly useful for mod-
eling data where the event rate varies due to unobserved heterogeneity among subpopulations. Each
component of the mixture contributes to the overall process at a rate proportional to its mixing weight,
allowing for a flexible representation of the aggregate event rate across different segments of the data.
Each component process has its distinct rate function, λi(t), weighted by coefficients πi, such that:

λ(t) =
∑̀
i=1

πiλi(t),

ensuring ` is the number of mixture Poisson components,
∑`

i=1 πi = 1 and each πi is non-negative. This
mixture model allows for flexible adaptation to diverse and complex event patterns, accommodating
changes in the intensity function over different segments of time or space.

Markov-modulated Poisson process is a more dynamic model where the rate of the Poisson
process is controlled by an underlying Markov chain. This state-dependent mechanism allows the
Markov-modulated Poisson process to model systems where the intensity of events varies accord-
ing to an evolving state of the system, which is governed by the Markov chain transitions. The rate
function λ(t) is directly influenced by the state of an underlying Markov chain at time t, described as:

λ(t) = λX(t),

where X(t) indicates the current state of the Markov chain, with λX(t) determining the rate specific to
that state. This model is exceptionally well-suited for environments, where event rates are inherently
dynamic and influenced by various stochastic processes, reflecting the complexities of real-world
systems.



Charlier series approximation 647

2.2. Charlier orthogonal polynomial series

Charlier polynomials, also known as Poisson-Charlier polynomials, are a series of orthogonal poly-
nomials closely associated with the Poisson distribution. They are essential for modeling deviations
from standard Poisson behavior, allowing for precise adjustments through series approximations. The
general form of the nth Charlier polynomial, Cn(x; a), is defined as:

Cn(x; a) =

n∑
k=0

(−1)k
(
n
k

)
x!

(x − k)!
an−k,

where a typically represents the mean rate of the Poisson process.
These polynomials are orthogonal with respect to the Poisson weight function e−a(ax/x!), holding

over the set of non-negative integers:

∞∑
x=0

Cm(x; a)Cn(x; a)e−a ax

x!
= δmnan,

where δmn is the Kronecker delta, indicating that Cm and Cn are orthogonal for m , n. The gen-
erating function for Charlier polynomials provides a powerful tool for deriving their properties and
simplifying calculations:

G(t, x; a) = e−at(1 + t)x =

∞∑
n=0

Cn(x; a)
tn

n!
.

Charlier polynomials also adhere to a three-term recurrence relation, essential for iterative computa-
tions:

xCn(x; a) = Cn+1(x; a) + (a + n)Cn(x; a) + anCn−1(x; a).

The explicit expressions for the first four Charlier polynomials, parameterized by a, which represents
the mean of the associated Poisson distribution: The zeroth polynomial C0(x; a) = 1, the first polyno-
mial C1(x; a) = x − a, the second polynomial C2(x; a) = (1/2)(x − a)2 − x, and the third polynomial
C3(x; a) = (1/6)(x − a)3 − (3/2)(x − a)x + a2.

These expressions for Charlier polynomials demonstrate increasing complexity with higher de-
grees, capturing more detailed aspects of sample data. Each polynomial is derived directly from the
general formula for Charlier polynomials, and as n increases, the expressions incorporate progres-
sively higher powers of x and a. This detailed structure is crucial in probabilistic models that rely on
the Poisson distribution, as it allows for precise adjustments to the model based on empirical data.

3. Methodology

3.1. Charlier series approximation

The Charlier polynomials, when combined with their associated weight function from the Poisson
distribution, form a foundation for diverse applications in statistical modeling, particularly through
generating functions and probabilistic analyses (Grandell, 1997). The weight function, representative
of the Poisson distribution, is defined as follows:

w(x; a) =
e−aax

x!
,
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where a is a positive parameter representing the mean of the distribution and x is a non-negative
integer (Sundt and Vernic, 2009). A linear combination of Charlier polynomials can be expressed as:

p(x; a) = c0C0(x; a) + c1C1(x; a) + c2C2(x; a) + · · ·

with c0, c1, c2, . . . being constant coefficients. The integration of this series with the Poisson weight
function yields the following function:

f (x) = e−a ax

x!
(c0C0(x; a) + c1C1(x; a) + c2C2(x; a) + · · · )

which simplifies to:

f (x) = e−a ax

x!

(
c0 + c1(x − a) + c2

(
1
2

(x − a)2 − x
)

+ · · ·

)
.

This framework is particularly useful for expanding the probabilities associated with a Poisson pro-
cess, which is critical for addressing issues like overdispersion within the distribution. The expanded
probability function for a Poisson process with truncation is detailed as follows:

fn(x; a) = w(x; a) (c0 + c1C1(x; a) + c2C2(x; a) + · · · + cnCn(x; a)) , (3.1)

where cn are the corresponding coefficients. This expanded formulation allows for a refined adjust-
ment of the Poisson distribution, enhancing the model’s ability to accurately reflect empirical data
characteristics such as skewness and kurtosis, thus providing a more robust tool for statistical analy-
sis.

Understanding the convergence properties and relevant limit theorems for these series is crucial for
applying them effectively in probabilistic models. The Charlier series, like other orthogonal polyno-
mial expansions, converges under specific conditions. The convergence of the Charlier series Cn(x; a)
for a Poisson variable X with parameter a generally depends on the properties of the weight function
and the nature of the coefficients used in the expansion (Barbour et al., 1992). First, for any fixed
x, the Charlier series approximation converges pointwise to the function it represents if the series of
coefficients (cn) associated with the expansion decreases sufficiently fast. Specifically, if |cn| ≤ Mρn

for some M > 0 and 0 < ρ < 1, then the series converges pointwise (Billingsley, 1995). In addition,
the Charlier series can uniformly converge on sets of integers if the coefficients cn decay exponentially
fast. This is typically ensured when the function being approximated by the series is smooth enough,
such as a bounded and continuous function of the Poisson parameter when interpreted over an interval
(Stuart and Ord, 1994).

For large a, the Charlier polynomials exhibit behavior similar to Hermite polynomials, which
implies that the Charlier polynomial of a suitably normalized Poisson variable converges to the corre-
sponding Hermite polynomial. This relationship underlies the application of the central limit theorem
(Glynn and Iglehart, 1990). As a → ∞, and for functions f approximated by the Charlier series∑∞

n=0 cnCn(x; a), the normalized sum (X − a)/
√

a where X is Poisson(a), converges in distribution to a
standard normal distribution. This means the Charlier series can be used to approximate functions of
Poisson-distributed variables that are normalized to be asymptotically Gaussian, enhancing their util-
ity in statistical inference (Lehmann and Casella, 1998; Johnson et al., 2005). The rate at which the
Charlier series converges to the target function or distribution can be quantitatively assessed using the
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square norm of the remainder of the series. For a given truncation at N, the error ‖ f −
∑N

n=0 cnCn(·; a)‖
depends on both N and a (Shorack and Wellner, 2009). For adequately smooth functions, the error in
approximation by the Charlier series can decrease exponentially with N and is inversely proportional
to some power of a. This rate is particularly effective when modeling functions with significant devi-
ations from typical Poisson expectations, such as heavy tails or high peak kurtosis (Hall and Heyde,
2014).

3.2. Estimation

The estimation of coefficients c0, c1, . . . , cn in the Charlier series approximation is integral to accu-
rately modeling the empirical distribution. These coefficients are typically derived through moment
matching techniques, where the theoretical moments of the Charlier series, mean, variance, skewness,
and kurtosis, are aligned with the empirical moments observed in the data. This alignment is essential
for ensuring that the expansion captures the fundamental characteristics of the target distribution.

The coefficients ci are determined through orthogonal projection, given the theoretical higher order
moments µ(·) of a target distribution f (·):

∞∑
`=0

Ch(x; a)w(x; a)
n∑

i=0

ciCi(x; a) =

∞∑
`=0

Ch(x; a) f (x), h = 0, 1, . . . , n. (3.2)

This yields a linear system:

n∑
i=0

ci

∞∑
`=0

w(x; a)Ci(x; a)Ch(x; a) =

h∑
k=0

δh,kµ(k), h = 0, 1, . . . , n,

where δh,k represents the coefficient of xk in Ch(x). Solving this system provides the coefficients ch as
(Ha and Provost, 2007):

ch =
1
ρh

h∑
k=0

δh,kµ(k), h = 0, 1, . . . , n.

The resulting approximation function fn(x) is formulated as:

fn(x) = w(x; a)
n∑

i=0

 1
ρi

i∑
k=0

δi,kµ(k)

Ci(x; a).

3.3. Generalization for computation

The Poisson distribution’s role as a foundational weight function in generating Charlier polynomials is
crucial for approximating target distributions. This method leverages Poisson properties to establish
a baseline for aligning theoretical models with empirical data. A linear combination of Charlier
polynomials, applied with the Poisson distribution, refines this initial model, acting as a pseudo-
polynomial approximant. This process minimizes differences between the target and Poisson-based
approximations by adjusting the parameters of the Charlier series to better fit the empirical data,
capturing the unique characteristics of the distribution.

A ratio approximant emerges, where the modified Charlier series, aligned with the Poisson weight
function, approximates the ratio of two distributions. This sophisticated approach addresses cases
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where simple Poisson models fail to capture complex data patterns. An appropriate initial approxi-
mant is critical. The Poisson distribution, while a useful starting point, often struggles with overdisper-
sion or multimodality in complex data. Generalizing the initial approximant to adaptive members of
the Poisson family, like mixtures of Poisson distributions, provides a more flexible framework. This
reduces the burden on Charlier polynomial adjustments, enhancing model fidelity and robustness.
Incorporating adaptive Poisson family distributions as initial approximants fosters more nuanced sta-
tistical tools, advancing probabilistic modeling capabilities to tackle increasingly complex data in
scientific and applied fields. This refined approach includes broader Poisson distributions as weight
functions, facilitating nuanced modeling of complex data distributions.

The coefficients ci of the Charlier polynomials are determined through the method of orthogonal
projection. For a generalized weight function ψ(x;α) with parameters α, which may represent a
mixture of Poisson distributions, the coefficients are computed like equation (3.2) as follows:

∞∑
`=0

Ch(x;α)ψ(x;α)
n∑

i=0

ciCi(x;α) =

∞∑
`=0

Ch(x;α) f (x), h = 0, 1, . . . , n. (3.3)

The associated Charlier polynomials Ci(x;α) can be obtained via the orthogonality equation, that is,

∞∑
x=0

Cm(x;α)Cn(x;α)ψ(x;α) = θmn,

where θmn is the orthogonality factor. This integral setup accounts for the domain of the Poisson dis-
tribution and its extensions, which is from 0 to infinity, given the discrete nature of these distributions.
This projection leads to a linear system:

n∑
i=0

ci

∞∑
`=0

ψ(x;α)Ci(x;α)Ch(x;α) =

h∑
k=0

δh,kµ(k), h = 0, 1, . . . , n,

where δh,k represents the coefficient of xk in Ch(x;α). The integral equation reflects the weighted
inner products over the expanded support of the Poisson mixtures. Solving this linear system yields
the coefficients ch as:

ch =
1
ρh

h∑
k=0

δh,kµ(k), h = 0, 1, . . . , n.

The approximation function fn(x) resulting from this series is then formulated as:

fn(x) = ψ(x;α)
n∑

i=0

 1
ρi

i∑
k=0

δi,kµ(k)

Ci(x;α).

Given the polynomial nature of Ci(x), which can be expanded as Ci(x;α) =
∑i
`=0 δi,`x`, we can reframe

the series as (Ha and Provost, 2007):

fn(x) = ψ(x;α)
n∑
`=0

 n∑
i=`

δi,`

ρi

i∑
k=0

δi,kµ(k)

 x`,
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and thus:

fn(x) = ψ(x;α)
n∑
`=0

ξ`x`,

where

ξ` =

n∑
i=`

δi,`

ρi

i∑
k=0

δi,kµ(k). (3.4)

Hence, this equation is computationally efficient because it allows for the calculation of coefficients
without needing to derive the associated Charlier type orthogonal polynomial series.

3.4. Performance measure and optimal tunning parameter

To measure the difference between a target distribution and an estimated distribution, you might con-
sider using several statistical metrics such as the Kullback-Leibler divergence (KL divergence), mean
squared error, or even a simple histogram-based comparison. Here, we will focus on a straightforward
implementation using the KL divergence, which measures the information lost when one distribution
is used to approximate another. KL divergence is a measure of how one probability distribution di-
verges from a second, expected probability distribution. For discrete probability distributions P (the
theoretical distribution) and Q (the estimated distribution), the KL divergence is given by:

DKL(P ‖ Q) =
∑

i

P(i) log
(

P(i)
Q(i)

)
,

where P(i) and Q(i) are the probabilities of the ith event in the respective distributions. We assume that
the probabilities in P and Q are nonzero for all i where P(i) is non-zero to avoid undefined logarithms
and the probabilities are normalized, meaning that the sum of all probabilities in each distribution
equals one.

To further refine our approach in determining the optimal degree of polynomial adjustment us-
ing Charlier orthogonal polynomials, we utilize the KL divergence as a selection criterion. This
divergence quantifies the difference between the true distribution and the distribution estimated by
successive polynomial approximations (Provost and Ha, 2015).

As we incrementally increase the degree of the polynomial, we compute the KL divergence for
each step. Our goal is to identify the degree to which the KL divergence reaches a local minimum for
the first time. This local minimum suggests the most effective polynomial degree for approximating
the distribution with minimal informational loss. At this point, we achieve an optimal balance between
model complexity and accuracy, ensuring the polynomial adjustment is well-tuned to the data without
underfitting or overfitting.

4. Numerical examples

We conduct two comprehensive artificial examples to evaluate the performance of the model under
pre-defined parameters, focusing on two distinct but widely applicable nonhomogeneous Poisson pro-
cesses. These processes are instrumental in modeling complex time-varying intensities that are often
observed in real-world scenarios. In addition, we conduct a real world data application.
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4.1. Mixture of Poisson distributions

We consider a mixture of two Poisson distributions as a statistical model used to describe data that are
generated from two different Poisson processes. The parameter π controls the relative contribution of
each Poisson distribution to the overall mixture, allowing a wider variety of data characteristics than
a single Poisson distribution. This approach is particularly beneficial in real-world scenarios where
data might be influenced by multiple underlying processes with different rates of event occurrence.
The probability mass function is a weighted sum of the probability mass functions of two individual
Poisson distributions. Let us define λ1 = 5 (mean rate of occurrences for the first Poisson process),
λ2 = 15 (mean rate of occurrences for the second Poisson process), and π = 0.3 (the proportion of the
mixture that comes from the first Poisson distribution). Consequently, 1 − π (0.7 in this case) will be
the proportion coming from the second distribution.

The probability mass function of a mixture of two Poisson distributions for observing k events is
given by:

P(X = k) = π × P1(X = k) + (1 − π) × P2(X = k),

where P1(X = k) = e−λ1 (λk
1/k!) and P2(X = k) = e−λ2 (λk

2/k!).
To obtain the exact moments of a mixture of two Poisson distributions, you typically need to

calculate the expected values of the powers of the random variable representing the mixture. Here is
the mathematical approach to calculate the nth moment (expected value of Xn) of this mixture. The
moment n of a random variable X following a mixture of two Poisson distributions can be calculated
using the formula:

E[Xn] = π · E
[
Xn

1

]
+ (1 − π) · E

[
Xn

2

]
,

where E[Xn
i ] is the nth moment of the Poisson distribution with the parameter λi. For a Poisson distri-

bution with parameter λ, the nth moment can use the following relation based on factorial moments:

E
[
Xn] =

n∑
k=0

S (n, k)λk,

where S (n, k) are the Stirling numbers of the second kind, which count the number of ways to partition
a set of n objects into k non-empty subsets.

The Kullback-Leibler divergence values presented indicate the degree of approximation accuracy
between the exact mixture of two Poisson distributions and approximating distributions of a simple
Poisson distribution and the Charlier series approximants.

• Base Poisson distribution: With a KL divergence of 0.537723, the simple Poisson model exhibits
a considerable deviation from the exact mixture, indicating a substantial approximation error. This
high value suggests that the simple Poisson distribution is significantly limited in capturing the
dual-rate nature inherent in the mixture, resulting in a poor fit.

• 6th Charlier series approximant: The approximation accuracy improves with the 6th Charlier series,
which yields a KL divergence of 0.23146. This improvement suggests that the 6th order approxi-
mant more effectively captures the probability distribution nuances of the mixture compared to the
simpler Poisson model.
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Figure 1: PMFs: Exact(blue dots), simple Poisson approximant(red dots), and 8th-degree Charlier approxi-
mant(red line).

• 8th Charlier series approximant: Demonstrating the best fit, the 8th Charlier series approximant
further reduces the KL divergence to 0.0190387. This marked decrease indicates that the 8th order
approximant closely replicates the actual characteristics of the mixture, offering a highly precise
approximation.

Figure 1 provides a visual representation of these differences. It displays the probability mass
functions of the exact mixture alongside those of the simple Poisson distribution and the 8th degree
Charlier series approximant. This visual comparison emphasizes the enhanced accuracy achieved
through higher-order Charlier approximations in modeling complex probabilistic behaviors.

4.2. Markov-modulated Poisson process

The Markov-modulated Poisson process is leveraged to model systems where the intensity of the Pois-
son process is governed by an underlying Markov process. In this model, the state transitions dictate
the rate changes, making it suitable for environments where the intensity dynamics is influenced by
identifiable states of a system. The example aims to determine the model’s effectiveness in tracking
these transitions and the corresponding impact on event intensities.

The transition matrix P in a Markov-Modulated Poisson process is fundamental as it defines the
probabilities of transitioning from one state to another in discrete time steps. Each element pi j of the
matrix represents the probability of transitioning from state i to state j. For a system with n states, P
is an n × n matrix given by:

P =


p11 p12 · · · p1n

p21 p22 · · · p2n
...

...
. . .

...
pn1 pn2 · · · pnn

 .
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Figure 2: PMF Differences: Exact and base Poisson approximant (blue dots) vs. exact and 4th-degree Charlier
approximant (red squares).

For the given example with four states, the transition matrix is:

P =


0.7 0.1 0.1 0.1
0.2 0.5 0.2 0.1
0.1 0.2 0.6 0.1
0.1 0.1 0.1 0.7

 .
Each state i is associated with a Poisson rate λi, which determines the intensity of the Poisson process
when the system is in state i. The vector of rates for all states is denoted as λ. For a system with n
states, λ is:

λ = [λ1, λ2, . . . , λn] .

For the example with four states, the rates are given by:

λ = [3, 4, 5, 2].

At each time step, the function generates the number of events based on the current state’s Poisson
rate using the Poisson distribution function. The state transitions are dictated by randomly selecting a
new state based on the current state’s transition probabilities. The output of this Markov-Modulated
Poisson process provides a distribution of the total number of events for multiple trials over a specified
period, which reflects the influence of both the stochastic state transitions and the Poisson-distributed
event occurrences, showcasing the dynamics of the Markov-Modulated Poisson process.

For a Markov-Modulated Poisson Process with transition matrix P and rate vector λ = [λ1, λ2, . . . ,
λn], the cumulant generating function KX(θ, t) for the Markov-Modulated Poisson process is given by

KX(θ, t) = log
(
α>et(Q+Λ(eθ−1))1

)
,

where Q = P − I is the generator matrix of the Markov chain, with I being the identity matrix,
Λ = diag(λ1, λ2, . . . , λn) is a diagonal matrix with the Poisson rates on the diagonal, α is assumed
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to be the steady-state probabilities to represent the long-term proportion of time the Markov chain
spends in each state, that is, a probability vector to satisfy P · α = α and 1 is a column vector of ones,
the nth cumulant κn(t) is obtained by differentiating the cumulant generating function KX(θ, t) with
respect to θ and evaluating it at θ = 0:

κn(t) =
∂nKX(θ, t)

∂θn

∣∣∣∣∣
θ=0

.

For practical purposes, the first and second cumulants (that is, the mean and variance) are, respectively,
µX(t) = α>et(Q+Λ)1 and σ2

X(t) = α>(et(Q+Λ)Λet(Q+Λ)> )1 − (µX(t))2. And the third and fourth moments
are, respectively, related to the cumulants by κ3(t) + 3κ2(t)µX(t) + µ3

X(t) and κ4(t) + 4κ3(t)µX(t) +

6κ2(t)µ2
X(t) + µ4

X(t).
In the context of assessing the accuracy of approximations for a given distribution, Figure 2 pro-

vides a visual comparison of probability mass function differences between the exact and the base
Poisson distribution, and between the exact and the 4th degree Charlier series density approximant.
The figure likely illustrates how each approximant aligns with the exact distribution visually, giving
an intuitive sense of how well each model captures the underlying distributional characteristics.

The exact moments of the Markov Modulated Poisson Process, specifically the zeroth (1), first
(3.43966), second (16.5), third (96.181), and fourth (648.491), encapsulate critical statistical prop-
erties such as total probability, mean, variance, skewness, and propensity for extreme values. A
fundamental component of our analysis involves the base Poisson distribution with a rate parameter
equal to the first moment (3.43966). This base distribution is crucial, as it forms the foundation upon
which the polynomial adjustments of the Charlier series approximant are developed. By integrating
these moments into the Charlier series, we enhance the polynomial representation, leading to a refined
expression:

1.68994 − 0.575486a + 0.135092a2 − 0.0141733a3 + 0.000755002a4,

where a represents the variable in the polynomial. This adjusted series provides a more accurate
approximation of the underlying stochastic process.

The KL divergence results for various polynomial approximations to a reference distribution are
as follows:

• Base Poisson (0.0260418): Indicates a minor but noticeable divergence from the reference, reflect-
ing the simplicity of the Poisson model.

• d = 2 (0.000442214): Shows a significantly improved fit over the base model, with the second-
degree polynomial capturing more characteristics of the reference.

• d = 3 (0.000490774): Slightly worse than d=2, potentially due to overfitting at this level of poly-
nomial complexity.

• d = 4 (4.44737 × 10−6): Demonstrates a minimal KL divergence, indicating an excellent approxi-
mation to the reference distribution.

• d = 5 (5.98039 × 10−6): Although still very close, shows a slight increase in divergence compared
to d = 4, suggesting diminishing returns with higher polynomial degrees.

These findings highlight that, while polynomial adjustments can significantly enhance the approxi-
mation quality, the choice of polynomial degree must balance complexity with performance, with the
aim of optimizing the accuracy without introducing unnecessary complexity or instability.



656 Hyung-Tae Ha

2017 2018 2019 2020 2021

0

10

20

30

40

50

60

70

Daily Admissions Over Time

0 10 20 30 40 50 60 70
0.00

0.02

0.04

0.06

0.08

Histogram of Daily Admissions

Figure 3: Daily number of hospital admission over time (left panel) and histogram of daily admission (right
panel).

4.3. Hospital admissions data

Our study employs a publicly available dataset hosted on GitHub in the repository titled [hospital
admissions data analysis](https://github.com/kateue/Hospital-Admissions-Data-Analysis). This data
set comprises hospital admission records that are ideal for analyzing patterns and intensity variations
over time. The data include detailed timestamps of patient admissions, providing a granular view of
admission frequencies, which are essential for modeling Poisson processes.

Utilizing this dataset allows us to apply the mixture of Poisson distributions to a real-world sce-
nario where admission rates are likely to vary due to factors such as time of day, day of the week, and
public health trends. The left panel of Figure 3 displays the daily number of hospital admissions, il-
lustrating that the occurrence rate varies over time, indicative of a non-homogeneous Poisson process.
The right panel demonstrates the complex distributional characteristics of these admissions, further
emphasizing the variability in daily rates.

The primary objective of incorporating this dataset is to validate the proposed statistical models by
applying them to data that exhibit non-homogeneous properties. We aim to assess the robustness of the
models in capturing the dynamics of hospital admissions that are influenced by complex underlying
processes.

We first establish an initial approximation using the Poisson distribution framework. The pa-
rameters of these models, including the mixture ratios pi and the rate parameters λi of the Poisson
distributions, are then optimized using the Newton-Raphson algorithm.

Figure 4 illustrates the mixture of three Poisson distributions and its respective expansions, provid-
ing a visual representation of how these statistical models are applied and the effects of their polyno-
mial enhancements. This visualization aids in understanding the incremental benefits and limitations
of expanding the model complexity through additional Charlier polynomial terms.

In the mixture model of three Poisson distributions, the estimated parameters represent the mixture
weights (probabilities) and the rate parameters λ for each of the Poisson components. The weights of
the mixture (pi) are estimated as p1 = 0.167222, p2 = 0.300697 and p3 = 0.532081. It indicates that
approximately 16.72% and 30.07% of the data are expected to be generated from the first and second
Poisson components, respectively. Thus, the third component contributes approximately 53.21% of
the data, making it the most significant contributor among the three.

And the rate parameters (λi) are λ1 = 35.8614; this rate parameter for the first Poisson distribution
suggests a relatively high frequency of events. A higher λ indicates a higher mean and variance, as
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Figure 4: Hospital admission data: Histogram, mixture of three Poisson distributions (blue line), and 3th-degree
series approximant (Cyan line).

both are equal to λ in a Poisson distribution. This component likely represents a segment of the data
with frequent occurrences. And the rate parameter λ2 = 3.27494 for the second Poisson distribution
is significantly lower than that of the first, indicating fewer events. This component accounts for a
smaller portion of the data, characterized by fewer frequent occurrences. And the rate λ3 = 18.9284
for the third Poisson distribution falls between the other two, suggesting a moderate level of event
occurrences.

The estimated parameters of this mixture model provide insight into the distributional characteris-
tics of the data set. The different λ values highlight the presence of varied behavior within the dataset,
with some subsets of the data showing high frequencies of events and others showing much lower fre-
quencies. Meanwhile, the mixture weights pi help quantify the proportion of the dataset attributed to
each behavior type. Such a model is particularly useful in scenarios where the data is heterogeneous,
arising from multiple underlying processes that cannot be adequately described by a single Poisson
distribution.

We generate the associated Charlier-type orthogonal polynomials, which facilitate the develop-
ment of series approximations through linear combinations. It is important to note that the effective-
ness of the linear combination adjustments depends significantly on the quality of the initial approx-
imation. If the initial model already closely approximates the target data, further adjustments made
by adding linear combinations may offer diminishing improvements. This is due to the inherent lim-
itations in enhancing a model that is already a good fit, which consequently reduces the impact of
additional polynomial series terms. The coefficients ξi for i = 0, 1, 2, and 3 of the approximant of the
probability mass function of the third degree series, as specified in equation (3.4), were estimated as
follows: ξ0 = 0.74964, ξ1 = 0.107293, ξ2 = −0.00714586, and ξ3 = 0.000116469.

The results using the difference measure reveal that among various models, the third-degree poly-
nomial adjustment (d = 3) with the lowest difference measure value (0.0000434733) provides the
best fit to the data, indicating superior accuracy in capturing complex patterns without overfitting.
Conversely, the second-degree (d = 2) model with a difference measure value of 0.00226874 and
the fourth-degree (d = 4) model with a value of 0.00136258 show poorer fits, suggesting they either
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underfit or introduce unnecessary complexity.

5. Concluding remarks

This study introduced the Charlier series that approximates probability mass functions as a powerful
tool to improve statistical models. Using Charlier polynomials, we can better represent probability
mass functions, increasing accuracy, and addressing overdispersion issues in Poisson processes.

We also demonstrated how advanced statistical models, such as the mixture of Poisson distribu-
tions and the Markov-modulated Poisson process, are effective for analyzing complex data, such as
hospital admission rates. These models have been tested through artificial examples and real-world
applications, showing their ability to capture dynamic patterns.

However, fully integrating Charlier polynomials with mixed Poisson models is still a developing
area of research. This integration could lead to significant improvements in model accuracy. Advanc-
ing polynomial expansions within Poisson distributions could transform data analysis tools, fulfilling
the need for sophisticated techniques that can handle complex patterns.

The analyzed models have provided clear insights into data variability and the precision of com-
plex approximations compared to simpler models. This underscores the importance of choosing the
right model for different analytical scenarios and pushes for the adoption of more advanced, tailored
statistical methods that incorporate polynomial expansions.
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