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Abstract
Quantile regression models have become popular due to their benefits in obtaining robust estimates. Some

machine learning (ML) models can estimate conditional quantiles. However, current ML methods mainly focus
on just adapting quantile regression. In this paper, we propose a local quantile ensemble based on ML methods,
which averages multiple estimated quantiles near the target quantile. It is designed to enhance the stability and
accuracy of the quantile fits. This approach extends the composite quantile regression algorithm that typically
considers the central tendency under a linear model. The proposed methods can be applied to various types
of data having nonlinear and heterogeneous trend. We provide an empirical rule for choosing quantiles around
the target quantile. The bias-variance tradeoff inherent in this method offers performance benefits. Through
empirical studies using Monte Carlo simulations and real data sets, we demonstrate that the proposed method can
significantly improve quantile estimation accuracy and stabilize the quantile fits.

Keywords: ensemble learning, quantile averaging, quantile crossing, tree-based models, variance
reduction

1. Introduction

Traditional regression models focus on estimating the conditional mean. However, relying solely on
the mean is inadequate since real data often exhibits heteroscedasticity. Instead, there is a grow-
ing recognition of the need to comprehend the underlying distribution. Ideally, estimating the entire
conditional distribution would be beneficial. Foresi and Peracchi (1995) and Klein et al. (2015) sug-
gested distributional regression methods to capture the full conditional distribution. However, they
can be computationally demanding and pose challenges in terms of interpretability.

Besides, quantile regression (QR) (Koenker and Bassett, 1978) provides an efficient method to
achieve a comprehensive understanding of the data. It is particularly robust in handling data with
high skewness, non-Gaussian errors, and outliers. We can explore the conditional distribution through
QR without making assumptions regarding the global distribution (Chapter 2.5 in Koenker, 2005).
Many fields that require knowledge beyond the conditional mean utilize QR these days. For example,
meteorology adopts QR to forecast heavy rainfall, healthcare examines treatment side effects (Powell,
2020), and finance calculates the value-at-risk of a risky investment (Keilbar and Wang, 2022) using
QR.

Estimating quantiles for complex data requires nonlinear models. Tree-based models targeting
quantiles include quantile regression forest (QRF) (Meinshausen and Ridgeway, 2006) and quantile
extremely randomized trees (QERT) (Geurts et al., 2006). Boosting models such as gradient boosting
machines (GBM) (Friedman, 2001), LightGBM (Ke et al., 2017), and extreme gradient boosting
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(XGBoost) allow for quantile estimation by substituting their original loss functions with a check
loss. Quantile smoothing splines (QSS) (Koenker and Portnoy, 1994) and support vector quantile
regression (SVQR) (Takeuchi et al., 2006; Li et al., 2007) are another variants of nonlinear quantile
regression models.

The crossing of the fitted quantiles is often an issue in the quantile regression models. To prevent
the fitted quantiles from crossings, researchers often impose constraints (He, 1997; Liu and Wu, 2011;
Shin and Jung, 2023). Although the proposed model does not employ certain constraint, we observe
that crossings can be much relieved as a byproduct.

In this paper, we aim to apply the concept of composite quantile regression (CQR) (Zou and Yuan,
2008) to various ML models. CQR combines objective functions for multiple quantiles and minimizes
them simultaneously. Bloznelis et al. (2019) and Zhao and Xiao (2014) showed that the combined
estimator has a higher efficiency than the original quantile regression. However, CQR primarily treat
the central tendency of linear models, which does not well matched for the terminology ‘quantile’.
Xie and Wen (2019) and Hatalis et al. (2019) integrate CQR concepts with deep learning models, but
those algorithms still primarily target the mean or median. One of the assumptions of CQR is that all
quantiles share the same regression parameter, and only varying the intercept term. This assumption
is restricted when analyzing heterogeneous data. Therefore, our goal is to relieve this assumption and
to develop methods that can estimate all range of quantiles for nonlinear and heterogeneous data.

We propose a new methodology called local quantile ensemble (LQE). LQE aims to ensemble
models for several quantiles in a straightforward way, averaging multiple quantile fits near a target.
This method is not restricted to specific algorithms, making it applicable to any quantile-targeted
models. While traditional quantile estimation focus on single quantile, LQE averages multiple quan-
tiles near the target. As a result, its performance may improve through the bias-variance trade-off.
Additionally, LQE can reduce quantile crossing, which is one of the main concerns in QR.

Our paper will proceed as follows: First, we review some quantile machine learning algorithms in
Section 2.1. In Section 2.2, we introduce the details of LQE, and illustrate the bias-variance trade-off

with a pilot example. Sections 3 and 4 show extensive numerical and visual results of the simulated
and real data sets, respectively. Monte Carlo simulations and real data analysis reveal the usefulness
of the proposed methods.

2. Methodology

2.1. Review of quantile machine learning methods

Consider a univariate response variable y ∈ R, and let x represent covariates with p dimensions.
Suppose we have independent samples (xi, yi), i = 1, . . . , n. The goal is to estimate the conditional
quantile of y given x. Denote the true quantile as Qτ(y|x), where τ ∈ (0, 1) indicates the quantile of
interest. Then, true conditional quantile is defined as

Qτ (y | x) = inf {y ∈ R : F (y | x) ≥ τ} . (2.1)

Here, F denotes a conditional distribution of y given x. To obtain the estimates of (2.1), Q̂τ(y|x), there
are several classes of machine learning models.

Boosting models (e.g., GBM, LightGBM, and XGBoost) have been used mainly for mean re-
gression, but they can be easily implemented for quantile estimation. Conventional boosting models
employ mean squared error (MSE) or mean absolute error as a loss function. We substitute these
with the mean check loss function to estimate conditional quantile. The check loss is defined as
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Lτ(y, ŷ) = |y − ŷ|{τ − I(y < ŷ)}, where I is an indicator function that returns 1 if the condition inside is
true or 0 otherwise.

With the mentioned loss function, boosting models learn by gradually integrating weak learners.
The weak learner is a model that performs relatively poor. Its performance is just above the random
guess. Denote the number of iterations as M. Then, we can formulate boosting models for quantiles
as follows:

Q̂τ (y | x) =

M∑
m=1

λĝm(x), where ĝm(x) = argmin
g

1
n

n∑
i=1

Lτ
(
yi,(m), g(xi)

)
. (2.2)

The λ represents a learning rate, which is typically a very small constant. ĝm(x) and yi,(m) are the
decision tree and the ith residual in the mth iteration, respectively, for m = 1, . . . ,M. Each tree is fitted
to correct the previous errors. The algorithm stops either when the maximum number of iterations is
reached or when a new decision tree no longer improves the loss function.

Meanwhile, QRF and QERT estimate quantiles by obtaining an empirical conditional distribution.
These models calculate the weighted average of I(yi ≤ y). Suppose we construct a QRF with H trees,
where H is a positive integer. Following the notation of Meinshausen and Ridgeway (2006), let θh be
a random parameter vector of the hth tree for h = 1, . . . ,H. Let Rl(x,θh) be the rectangular subspace
generated by a single leaf l(x, θh). Then QRF combines all trees by averaging the weight vectors from
h = 1, . . . ,H trees as follows:

F̂ (y | x) =

n∑
i=1

wi(x)I(yi ≤ y), where wi(x) =
1
H

H∑
h=1

wi (x, θh) and wi (x, θh) =
I(xi ∈ Rl(x,θh))∑n

j=1 I(x j ∈ Rl(x,θh))
.

Note that the weight vector wi(x, θh) indicates a proportion of observations that are contained in the
leaf for x. We can subsequently obtain the estimates Q̂τ(y|x) by substituting the estimates F̂(y|x) in
place of F(y|x) in (2.1) as follows:

Q̂τ (y | x) = inf
{
y ∈ R : F̂ (y | x) ≥ τ

}
. (2.3)

Once the empirical distribution of F̂(y|x) is obtained, one can vary τ in (2.3) to target any quantiles
of interest. Thus, we can obtain fits for multiple quantiles from a single fitted model. Furthermore,
quantile crossing does not occur in QRF since the obtained empirical distribution is a monotonely
increasing function of y.

QERT uses a similar fitting algorithm as QRF but amplifies the randomness. The primary differ-
ences are that each tree in QERT completely randomizes the cutpoints of the nodes and uses the entire
sample to grow the tree. As a result, we can obtain the estimates using the same method as in (2.3),
ensuring they do not exceed the above quantile fit. Further details of the algorithm can be found in
Geurts et al. (2006).

Many studies compare various ML models to analyze real-world data with nonlinear patterns. To
improve the performance ML quantile models, we suggest to combine multiple models with the ideas
of CQR. The details of ensemble comes in the next section.

2.2. Local quantile ensemble

The methodology we propose here is local quantile ensemble (LQE). The core idea of LQE is to
combine K estimates of quantiles 0 < τ1 < · · · < τK < 1 near the target quantile τ to yield a more
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accurate estimate. For simplicity, we refer to the K quantiles as local quantiles where the target
quantile is located at the center. LQE combines estimates of the local quantiles around the target
quantile as

Q̂LQE
τ (y | x) =

1
K

K∑
k=1

Q̂τk (y | x) . (2.4)

We can easily implement LQE for models that return conditional quantile estimates, such as those
in (2.2) and (2.3). While (2.4) can be extended to a weighted average, this paper only addresses the
equally weighted version.

LQE has two advantages over previous studies. First, it is broadly applicable beyond linear mod-
els. Existing methods are largely based on the linear model, where the objective is to estimate the
regression parameter. For example, Blozenlis et al. (2019) and Zhao and Xiao (2014) compute the
average of the coefficient estimators for multiple quantiles. To extend this to ML models, we averages
the fitted values instead of averaging the parameters. Second, LQE is capable of targeting any quan-
tiles between 0 and 1. Most studies of CQR focus on estimating the central trend of data using full
quantile information, typically limiting the target to the mean or median. In contrast, LQE can aims
to estimate all conditional quantiles. As a result, LQE provides a more comprehensive approach to
quantile prediction.

The ensemble effect can improve the performance of LQE. Ensemble approaches address prob-
lems where models may overfit or become trapped at a local optimum (Dietterich, 2000). Tradi-
tional quantile regression utilizes restricted information near the target quantile, making it sensitive to
changes in observations above or below the fit (Koenker, 2005, Chapter 2.5). Consequently, estimates
tends to be less accurate in regions with few samples or when τ is close to an extreme quantile (Li and
Wang, 2019). By combining adjacent quantiles, LQE utilizes a broader range of samples, effectively
addressing these issues. The bias-variance trade-off offered by LQE is crucial here. By averaging
multiple quantile fits, LQE reduces the variance associated with individual model predictions, leading
to more reliable and robust estimates. Despite an increase in bias, the overall performance of LQE
often improves due to the substantial reduction in variance.

Next, we detail how to decide the local quantiles {τ1, . . . , τK}. Two factors need to be specified:
The range and the number of local quantiles. Combining quantiles that are far from the target quantile
might not be helpful. Therefore, it may be necessary to restrict the range of the local quantiles. Denote
the range as band(τ), which stands for bandwidth. The optimal length of band(τ) is influenced by the
model and algorithm chosen, but establishing a theoretical optimum for each model is challenging.
Therefore, we propose a simple heuristic: Use a wider bandwidth for quantiles with high densities.
With the sparse density, each quantile fit is unstable. Even a small change in the target quantile can
have a significant impact on the fit. Therefore, it is recommended to set band(τ) narrowly for those
spaces. Because typical data sets have more samples near the center, we suggest the following rule
for the bandwidth.

(Rule 1) The bandwidth for the target quantile τ, band(τ), is determined as

band(τ) = [τ ± 0.5cτ] , where cτ = −|0.9(τ − 0.5)| + 0.5.

Note that the maximum length of the band(τ) in Rule 1 is 0.5, which is achieved when τ = 0.5.
Once we fix the bandwidth according to the target quantile τ, the next decision is the number of

quantiles to combine, denoted by K. This is simpler than determining the range, as Koenker (2005,
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Table 1: The mean of estimated squared bias and variance of conditional quantile fits with LightGBM for
τ = 0.1, 0.3, 0.5, 0.6, 0.8, and 0.9. All values are multiplied by 102

τ = 0.1 τ = 0.3 τ = 0.5 τ = 0.6 τ = 0.8 τ = 0.9
Bias2 Var Bias2 Var Bias2 Var Bias2 Var Bias2 Var Bias2 Var

SQ 0.056 0.397 0.035 0.887 0.084 1.260 0.147 1.166 0.225 2.831 0.387 6.404
LQE 0.082 0.378 0.042 0.706 0.175 0.863 0.255 1.042 0.478 2.316 0.983 3.115

Chapter 5.5) notes that selecting a large K value does not significantly affect performance. Previous
studies have often set K to 9 or 10 (Zhao and Xiao, 2014; Cannon, 2018). Furthermore, Zou and Yuan
(2008) found no significant difference in the performance of the estimates beyond K = 9. When too
many number of quantiles are averaged, the correlation between local quantile estimates increases.
This hinders the variance reduction. Therefore, we fix K at 9 for LQE.
Pilot example: To demonstrate the bias-variance trade-off of the proposed method, we design a pilot
experiment. Following Scenario 1 in Section 3, we generate the training data sets for R = 100 times.
We fit a LightGBM model for target quantile τ = 0.1, 0.3, 0.5, 0.6, 0.8, and 0.9. We decompose MSE
into the squared bias and variance with a fixed test data set of 1000 samples. Let Q̂(r)

τ (y|xi) be the τth

conditional quantile estimate given xi in the rth training data set. We calculate the squared bias and
variance for the ith test sample as follows:

ˆBias
2
i =

(
Q̄τ (y | xi) − Qτ (y | xi)

)2
, V̂ari =

1
R

R∑
r=1

(
Q̂(r)
τ (y | xi) − Q̄τ (y | xi)

)2
, for i = 1, . . . , n.

Here, Qτ(y|xi) represents a true quantile, and Q̄τ(y|xi) is the average of the estimated quantile function
over the R replication.

Table 1 summarizes the average of the estimated squared bias and variance across 1000 test sam-
ples. SQ refers to a single quantile from a model that fits the target quantile only. We observe that
LQE reduces the variance while only slightly increasing the bias in general. The larger bias of LQE
compared to SQ is a result of employing multiple quanitle fits. Nevertheless, our empirical findings
indicate that the reduction in variance outweighs the increase in bias. This reduction in variance is
particularly noticeable in the quantiles τ = 0.8 and 0.9, where the corresponding density of the error
distribution is low. These results show the favorable effect of ensemble. In the next section, we will
see that the variance reduction can lead to better performance in various ML models. Although we no
more presents the decomposition of MSE, we believe the reduced MSE by the proposed methods is
due to the bias-variance trade-off.

3. Simulation studies

We compare the performance of our method to those of various ML quanitle regression methods. We
consider two scenarios:

(Scenario 1) We generate data following the Example 2 in Cannon (2018).

y =
(
1 − 2x + 4x2

)
exp

(
−2x2

)
+ (0.2 + 0.08x) ε,

where x is randomly drawn from U(−2, 2). We consider χ2(3) for the distribution of ε.

(Scenario 2) We modify the Scenario 4 in Das and Ghosal (2018).

y = sin(πx1) + cos(πx2) +
(
x2

1 + 1.5x2
2 − 0.5x2

)
ε,
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(a) True quantile; ε ∼ χ2(3) (b) SVQR-SQ fit (c) SVQR-LQE fit

(d) True quantile; ε ∼ χ2(3) (e) QSS-SQ fit (f) QSS-LQE fit

(g) True quantile; ε ∼ N(0, 1) (h) SVQR-SQ fit (i) SVQR-LQE fit

(j) True quantile; ε ∼ N(0, 1) (k) QSS-SQ fit (l) QSS-LQE fit

Figure 1: Fitted curves under Scenario 1 with quantile smoothing spline (QSS) and support vector quantile
regression (SVQR). Each curve corresponds to the quantile fits at τ = 0.1, 0.3, 0.5, 0.6, 0.8, and 0.9 from bottom

to the top.

where the bivariate covariates x = [x1, x2] are randomly drawn from U(0, 1) × U(0, 1).
The error term ε follows a t-distribution with 4 degrees of freedom.

Note that the generated data have a nonlinear trend and heteroscedastic errors in both scenarios.
For the first scenario, we mainly focus on the error with the chi-square distribution, but we additionally
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Table 2: The mean of MSEs at τ = 0.1, 0.3, 0.5, 0.6, 0.8, and 0.9 and crossing losses (with their standard error in
the parenthesis) for 100 iterations under Scenario 1

Model Method τ = 0.1 τ = 0.3 τ = 0.5 τ = 0.6 τ = 0.8 τ = 0.9
Crossing

loss

GBM

SQ
0.9128

(0.0670)
0.8247

(0.0313)
0.9824

(0.0361)
1.1756

(0.0401)
2.1746

(0.0961)
4.3652

(0.3231)
0.5767

(0.2082)

LQE
0.8615

(0.0289)
0.6329

(0.0214)
0.8872

(0.0348)
1.0994

(0.0464)
2.0980

(0.1276)
3.7406

(0.2817)
0.2325

(0.0843)

LQE-S
0.9434

(0.0346)
0.6941

(0.0211)
0.8502

(0.0333)
1.0659

(0.0440)
1.9340

(0.0965)
3.9925

(0.3169)
0.2607

(0.1137)

XGBoost

SQ
0.6122

(0.0254)
2.3963

(0.0990)
1.4581

(0.0610)
2.2915

(0.1019)
4.1964

(0.2721)
8.8616

(0.5117)
0.1364

(0.0264)

LQE
0.5490

(0.0168)
0.8078

(0.0272)
1.4378

(0.0576)
1.7092

(0.0775)
4.1071

(0.2093)
5.3745

(0.2964)
0.0077

(0.0029)

LQE-S
0.7356

(0.0192)
0.7546

(0.0264)
1.3214

(0.0570)
1.8151

(0.0889)
4.3839

(0.2077)
6.7670

(0.3330)
0.0731

(0.0460)

LightGBM

SQ
0.5568

(0.0207)
0.8507

(0.0298)
1.1962

(0.0441)
1.6267

(0.0635)
3.1880

(0.1663)
4.5249

(0.2877)
0.2381

(0.0416)

LQE
0.4718

(0.0177)
0.5776

(0.0183)
0.9226

(0.0363)
1.2125

(0.0487)
2.1504

(0.0956)
3.9118

(0.2206)
0.0029

(0.0014)

LQE-S
0.5567

(0.0214)
0.5623

(0.0161)
0.9430

(0.0386)
1.2563

(0.0515)
2.3903

(0.1302)
3.6402

(0.2037)
0.0034

(0.0018)

QRF

SQ
0.6046

(0.0224)
1.0282

(0.0371)
1.7211

(0.0808)
2.0594

(0.0921)
2.7853

(0.1238)
6.7809

(0.3763)
0.0000

(0.0000)

LQE
0.4912

(0.0178)
0.9490

(0.0338)
1.4449

(0.0603)
1.7419

(0.0779)
2.7542

(0.1480)
5.6504

(0.3464)
0.0000

(0.0000)

LQE-S
0.5124

(0.0180)
0.9459

(0.0339)
1.5895

(0.0683)
1.9040

(0.0873)
2.7481

(0.1446)
6.3088

(0.3743)
0.0000

(0.0000)

QERT

SQ
0.4828

(0.0149)
0.5415

(0.0185)
0.9956

(0.0416)
1.4259

(0.0531)
3.6139

(0.1696)
7.3510

(0.3890)
0.0000

(0.0000)

LQE
0.3988

(0.0122)
0.5139

(0.0182)
0.9101

(0.0407)
1.2915

(0.0585)
3.2943

(0.1748)
7.0852

(0.3762)
0.0000

(0.0000)

LQE-S
0.4218

(0.0125)
0.4504

(0.0168)
0.8337

(0.0397)
1.3196

(0.0601)
3.4947

(0.1763)
7.2023

(0.3730)
0.0000

(0.0000)

The crossing loss is calculated for τ′=0.1 and τ′′=0.3. The smallest values for each model are bolded for clarity. MSEs are
multiplied by 102, and the crossing loss by 103.

consider the standard normal distribution for the graphical demonstration. For the second scenario,
the original paper considered Gaussian errors, but we generate errors with a heavy-tailed distribution.
The target quantiles are τ = 0.1, 0.3, 0.5, 0.6, 0.8, and 0.9.

Among ML algorithms capable of estimating conditional quantiles, we select GBM, XGBoost,
LightGBM, QRF, and QERT. In addition, we fit QSS and SVQR for the visualization of Scenario 1 in
Figure 1. We use R 3.5.1 program for QSS and SVQR, and Python 3.11 for the others. QSS is imple-
mentable with the rqss function in the package quantreg (Koenker et al., 2018). The kqr function
from the package kernlab is applicable to SVQR. We can fit QRF and QERT using the functions
RandomForestQuantileRegressor and ExtraTreesQuantileRegressor in the python pack-
age sklearn-quantile (Roebroek, 2022). We use the GradientBoostingRegressor function
in scikit-learn (Pedregosa et al., 2011) for GBM, the lightgbm package (Ke et al., 2017) for
LightGBM, and the xgboost package (Chen and Guestrin, 2016) for the XGBoost model. The LQE
method can be easily implemented using existing packages.

We compare three models: Single quantile (SQ) and two versions of local quantile ensemble
(LQE). The SQ is a genuine model with a single target quantile. LQE combines K = 9 local quantiles.
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To determine the magnitude of the local, we use Rule 1 in Section 2.2. Note that LQE requires to tune
each of the K model. This increases the computing cost by K times. To reduce the tuning process,
we consider a simpler version. First, we find the optimal parameter for the target quantile only. Then,
we apply it to all the other local quantile models. The simpler one, LQE-S, needs a similar tuning
time to SQ. Although the tuning time for LQE-S is much shorter than that of LQE, its results are quite
comparable.

We split the generated data into training and test samples. The training data is used for model
fitting and validation for parameter tuning, and the test data is used for measuring the prediction
accuracy. In Scenario 1, the training and test sample sizes are 500 and 1000, respectively. In Scenario
2, we utilize a data set of 2000 samples for training and 5000 samples for the test. The simulations
are repeated 100 times.

We use two criteria for evaluation. First, we calculate a mean square error (MSE) between the true
quantile function and the predicted quantile fit over the test data, as follows:

MSE(τ) :=
1
n

n∑
i=1

(
Q̂τ(y | xi) − Qτ (y | xi)

)2
. (3.1)

This is a well-known indicator of the estimation accuracy. Next, we employ the crossing loss (Sang-
nier et al., 2016) to measure the undesirable quantile crossings. It is defined as

Crossing loss :=
1
n

n∑
i=1

max
(
0, Q̂τ′ (y | xi) − Q̂τ′′ (y | xi)

)
, where 0 < τ′ < τ′′ < 1. (3.2)

The crossing loss is nonzero when the quantile estimate for τ′ exceeds that for τ′′ quantile. We record
the crossing loss for only boosting models because QRF and QERT innately prevent quantile crossing.
The crossing losses for these models are all zero.

We select the parameters through a grid search. The chosen parameters are the empirical min-
imizers of the mean check loss from 10-fold cross-validation. The range of parameters and their
description are given in the appendix. We search for the same parameter space for SQ, LQE, and
LQE-S within each ML model for a fair comparison.

Tables 2 and 3 show the results for Scenarios 1 and 2. Regardless of the ML model employed, LQE
generally exhibits a lower MSE compared to SQ. It suggests that the ensemble effect of LQE results
in improved performance. LQE-S, while slightly behind LQE in some cases, still often outperforms
SQ, making it a viable option for scenarios where computational resources and time are constrained.
The benefit of the proposed method is reassured in crossing losses. In most cases, LQE and/or LQE-S
show much smaller crossing losses than SQ. In general, LQE provide a stabler fit which tends to keep
the fits from crossing.

For graphical illustration, we apply quantile smoothing splines (QSS) and support vector quan-
tile regression (SVQR) to Scenario 1. The algorithms for them are in Koenker and Portnoy (1994),
Takeuchi et al. (2006), and Li et al. (2007). Figure 1 displays the fitted curves of SQ and LQE.
Quantile crossings sometimes occur in SQ near the boundary, whereas they are rare in the proposed
method. The numerical summary of Figure 1 is detailed in the appendix. Figure 2 illustrates the fitted
curves of ML models in Scenario 2. LQE displays a slightly stabler surface than SQ.

4. Real data analysis

In this section, we analyze three real data sets. We select data from three different fields. All data sets
used here are available in the UCI machine learning repository. We briefly introduce each data set.
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Table 3: The mean of MSEs at τ = 0.1, 0.3, 0.5, 0.6, 0.8, and 0.9 and crossing losses (with their standard error in
the parenthesis) for 100 iterations under Scenario 2. The crossing loss is calculated for τ′ = 0.1 and τ′′ = 0.3.
The smallest values for each model are bolded for clarity. MSEs are multiplied by 102, and the crossing loss by
103.

Model Method τ = 0.1 τ = 0.3 τ = 0.5 τ = 0.6 τ = 0.8 τ = 0.9
Crossing

Loss

GBM

SQ
0.7085

(0.0266)
0.2768

(0.0079)
0.1832

(0.0054)
0.1758

(0.0057)
0.2183

(0.0097)
0.4162

(0.0160)
5.4292

(0.4368)

LQE
0.6078

(0.0234)
0.2197

(0.0063)
0.1546

(0.0046)
0.1650

(0.0055)
0.2229

(0.0096)
0.3960

(0.0168)
0.9908

(0.0866)

LQE-S
0.6178

(0.0241)
0.2246

(0.0064)
0.1513

(0.0047)
0.1647

(0.0055)
0.2220

(0.0095)
0.4083

(0.0178)
1.0558

(0.0946)

XGBoost

SQ
0.8727

(0.0313)
0.4128

(0.0129)
0.3267

(0.0108)
0.3052

(0.0112)
0.3692

(0.0185)
0.6839

(0.0408)
7.9461

(0.6017)

LQE
0.8157

(0.0265)
0.3315

(0.0082)
0.2598

(0.0068)
0.2522

(0.0073)
0.3336

(0.0132)
0.5120

(0.0286)
1.3189

(0.0679)

LQE-S
0.7101

(0.0216)
0.3049

(0.0081)
0.2299

(0.0068)
0.2336

(0.0072)
0.2858

(0.0118)
0.5117

(0.0294)
1.1192

(0.0714)

LightGBM

SQ
0.8783

(0.0306)
0.3640

(0.0103)
0.2837

(0.0071)
0.2920

(0.0079)
0.2385

(0.0082)
0.4435

(0.0151)
5.3904

(0.2655)

LQE
0.7154

(0.0224)
0.2793

(0.0071)
0.1975

(0.0053)
0.2114

(0.0060)
0.2502

(0.0082)
0.4177

(0.0169)
0.8135

(0.0563)

LQE-S
0.6936

(0.0208)
0.2888

(0.0073)
0.2030

(0.0052)
0.2289

(0.0063)
0.2175

(0.0079)
0.4027

(0.0156)
0.8455

(0.0621)

QRF

SQ
1.7994

(0.0529)
0.5771

(0.0165)
0.4259

(0.0100)
0.5258

(0.0138)
0.8837

(0.0290)
1.5439

(0.0515)
0.0000

(0.0000)

LQE
2.1930

(0.0640)
0.5625

(0.0147)
0.4467

(0.0098)
0.4789

(0.0110)
0.7876

(0.0226)
1.8936

(0.0577)
0.0000

(0.0000)

LQE-S
2.0693

(0.0605)
0.5581

(0.0147)
0.4185

(0.0091)
0.5352

(0.0131)
0.9277

(0.0276)
1.7124

(0.0557)
0.0000

(0.0000)

QERT

SQ
1.1710

(0.0309)
0.3560

(0.0088)
0.2741

(0.0067)
0.2916

(0.0065)
0.4417

(0.0107)
1.2037

(0.0845)
0.0000

(0.0000)

LQE
1.8633

(0.0470)
0.3027

(0.0064)
0.2249

(0.0053)
0.2605

(0.0063)
0.4820

(0.0118)
1.9316

(0.0459)
0.0000

(0.0000)

LQE-S
1.2676

(0.0345)
0.3063

(0.0071)
0.2260

(0.0057)
0.2574

(0.0062)
0.4209

(0.0103)
0.9353

(0.0275)
0.0000

(0.0000)

Bike: The bike-sharing data contains information on the number of bike rentals and the weather
by day or hour gathered from the bike-sharing system. Among these, we use the data collected per
day. Fanaee-T and Gama (2014) first analyzed this data, and Schallhorn et al. (2017) used D-vine
quantile regression with it. The objective is to solve a regression problem predicting the total number
of bikes rented per day. After excluding variables linearly dependent on the total number of rentals
and the date variable, there are p = 11 variables and n = 731 observations. We randomly select 500
samples as training data and the others as test data.
Concrete: We analyze the concrete data to predict the compressive strength of the concrete based on
its age and ingredients. The data was first proposed by Yeh (1998). Romano et al. (2019) conducted
conformal inference using quantile regression. It contains n = 1030 samples, with p = 7 covariates.
All covariates are continuous variables, such as the amount of fly ash and water in the concrete. We
randomly divide the data into 700 training samples and 330 test samples.
Blog Feedback: The blog-feedback data was gathered by crawling and analyzing the raw HTML
documents of blog posts. Buza (2013) initially collected the posts from 2010 to March 2012. Feldman
et al. (2021) examined it to create prediction intervals using orthogonal quantile regression, and Alaa
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(a) True quantile at τ = 0.6 (b) GBM-SQ fit at τ = 0.6 (c) GBM-LQE fit at τ = 0.6

(d) True quantile at τ = 0.6 (e) LGBM-SQ fit at τ = 0.6 (f) LGBM-LQE fit at τ = 0.6

(g) True quantile at τ = 0.9 (h) GBM-SQ at τ = 0.9 (i) GBM-LQE at τ = 0.9

(j) True quantile at τ = 0.9 (k) LGBM-SQ at τ = 0.9 (l) LGBM-LQE at τ = 0.9

Figure 2: True conditional quantile surfaces and fitted ones for τ = 0.6 and 0.9 under Scenario 2.

et al. (2023) analyzed it with conformalized unconditional quantile regression. We aim to predict
the number of comments each post will receive during the next day. The data was already split
into training and test sets, but we combine them. Final data has a dimension of n = 60, 021 and
p = 280. Examples of covariates include the number of characters in a blog post and the date and
time of publication. We randomly select 10,000 observations as training data and used the remaining
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Table 4: The mean of check losses at τ = 0.1, 0.3, 0.5, 0.6, 0.8 and 0.9 and crossing losses (with the standard
error in the parenthesis) for 100 iterations with bike-sharing data

Model Method τ = 0.1 τ = 0.3 τ = 0.5 τ = 0.6 τ = 0.8 τ = 0.9
Crossing

loss

GBM

SQ
1.4109

(0.0138)
1.9793

(0.0150)
2.0331

(0.0191)
1.9369

(0.0114)
1.4588

(0.0100)
0.9714

(0.0088)
0.6532

(0.0344)

LQE
1.3878

(0.0131)
1.9768

(0.0144)
2.0222

(0.0123)
1.9103

(0.0114)
1.4198

(0.0096)
0.9550

(0.0084)
0.1821

(0.0139)

LQE-S
1.3881

(0.0130)
1.9679

(0.0148)
2.0120

(0.0120)
1.9151

(0.0116)
1.4425

(0.0097)
0.9540

(0.0084)
0.1445

(0.0109)

XGBoost

SQ
1.4411

(0.0174)
2.0528

(0.0162)
2.1270

(0.0120)
2.0197

(0.0105)
1.5304

(0.0097)
1.0386

(0.0086)
2.1641

(0.0772)

LQE
1.3503

(0.0147)
1.9798

(0.0151)
2.0358

(0.0123)
1.9461

(0.0109)
1.4528

(0.0092)
0.9765

(0.0083)
0.3310

(0.0216)

LQE-S
1.3713

(0.0158)
1.9853

(0.0156)
2.0478

(0.0120)
1.9530

(0.0107)
1.4716

(0.0097)
0.9964

(0.0079)
0.4635

(0.0287)

LightGBM

SQ
1.4514

(0.0172)
2.1141

(0.0159)
2.2010

(0.0135)
2.0838

(0.0133)
1.5113

(0.0102)
1.0144

(0.0086)
1.5259

(0.0547)

LQE
1.3994

(0.0149)
2.0800

(0.0149)
2.1565

(0.0135)
2.0405

(0.0124)
1.4799

(0.0098)
0.9737

(0.0082)
0.2694

(0.0175)

LQE-S
1.4222

(0.0164)
2.0832

(0.0149)
2.1582

(0.0136)
2.0473

(0.0125)
1.4845

(0.0098)
0.9837

(0.0085)
0.3926

(0.0225)

QRF

SQ
1.3385

(0.0107)
2.1736

(0.0150)
2.2686

(0.0150)
2.1528

(0.0132)
1.5254

(0.0092)
0.9540

(0.0058)
0.0000

(0.0000)

LQE
1.3378

(0.0098)
2.1500

(0.0143)
2.2159

(0.0143)
2.1038

(0.0131)
1.5116

(0.0091)
0.9536

(0.0057)
0.0000

(0.0000)

LQE-S
1.3403

(0.0096)
2.1514

(0.0142)
2.2197

(0.0144)
2.1069

(0.0132)
1.5141

(0.0091)
0.9551

(0.0056)
0.0000

(0.0000)

QERT

SQ
1.3224

(0.0105)
2.2035

(0.0124)
2.3237

(0.0121)
2.1968

(0.0102)
1.5522

(0.0071)
0.9686

(0.0051)
0.0000

(0.0000)

LQE
1.3041

(0.0088)
2.1618

(0.0118)
2.2528

(0.0114)
2.1407

(0.0103)
1.5235

(0.0071)
0.9582

(0.0048)
0.0000

(0.0000)

LQE-S
1.2734

(0.0111)
2.1062

(0.0148)
2.2014

(0.0143)
2.0907

(0.0129)
1.4892

(0.0094)
0.9325

(0.0063)
0.0000

(0.0000)

The check loss values are divided by 102 and crossing losses are divided by 10.

observations as test data.
We fit the quantile ML models discussed in the previous section. The number of local quantiles,

K, is 9 for LQE and LQE-S. All model fitting procedures are similar to those in Section 3. We search
for the parameters in each model using a grid search. The details of the parameter spaces we search
is in the appendix.

We measure the mean check loss, defined as

1
n

n∑
i=1

Lτ (yi, ŷi) =
1
n

n∑
i=1

|yi − ŷi| {τ − I (yi < ŷi)} , where ŷi = Q̂τ (y | xi) . (4.1)

Tables 4, 5 and 6 summarize the check loss and crossing loss of the compared models from 100
random splits. The performance of LQE and LQE-S are frequently superior to that of SQ. These
results demonstrate the proposed method can enhance the accuracy of predictions. LQE yields much
lower crossing losses in most cases. LQE seems to suppress quantile crossing without additional
constraints.

To demonstrate the computation efficiency of LQE-S, we also measure the computation time re-
quired for the parameter tuning process using the GBM model and the bike dataset. Because both
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Table 5: The mean of check losses at τ = 0.1, 0.3, 0.5, 0.6, 0.8 and 0.9 and crossing losses (with the standard
error in the parenthesis) for 100 iterations with concrete data

Model Method τ = 0.1 τ = 0.3 τ = 0.5 τ = 0.6 τ = 0.8 τ = 0.9
Crossing

loss

GBM

SQ
0.9393

(0.0059)
1.3099

(0.0089)
1.3541

(0.0093)
1.3378

(0.0098)
1.2397

(0.0106)
0.9691

(0.0081)
0.7125

(0.0233)

LQE
0.9130

(0.0056)
1.3149

(0.0079)
1.3681

(0.0087)
1.3469

(0.0094)
1.2070

(0.0096)
0.9319

(0.0080)
0.2193

(0.0094)

LQE-S
0.9394

(0.0054)
1.3096

(0.0085)
1.3576

(0.0088)
1.3345

(0.0097)
1.2213

(0.0101)
0.9521

(0.0078)
0.3727

(0.0140)

XGBoost

SQ
0.9269

(0.0073)
1.3585

(0.0100)
1.4433

(0.0095)
1.4573

(0.0098)
1.2710

(0.0115)
0.9873

(0.0103)
1.4716

(0.0441)

LQE
0.8794

(0.0063)
1.3208

(0.0086)
1.4166

(0.0088)
1.4015

(0.0094)
1.2100

(0.0103)
0.9300

(0.0090)
0.3018

(0.0203)

LQE-S
0.8890

(0.0065)
1.3382

(0.0088)
1.4244

(0.0090)
1.4028

(0.0093)
1.2168

(0.0104)
0.9491

(0.0097)
0.3693

(0.0134)

LightGBM

SQ
0.9037

(0.0068)
1.4068

(0.0088)
1.5828

(0.0090)
1.5761

(0.0102)
1.2871

(0.0107)
0.9699

(0.0096)
1.1566

(0.0315)

LQE
0.8718

(0.0059)
1.3946

(0.0082)
1.5679

(0.0090)
1.5457

(0.0095)
1.2633

(0.0099)
0.9314

(0.0085)
0.1341

(0.0073)

LQE-S
0.8825

(0.0067)
1.3933

(0.0082)
1.5704

(0.0090)
1.5473

(0.0095)
1.2598

(0.0101)
0.9514

(0.0090)
0.3752

(0.0143)

QRF

SQ
0.9412

(0.0056)
1.6482

(0.0088)
1.8027

(0.0102)
1.7678

(0.0095)
1.3877

(0.0088)
0.9458

(0.0058)
0.0000

(0.0010)

LQE
0.9422

(0.0053)
1.6412

(0.0087)
1.8115

(0.0098)
1.7577

(0.0094)
1.3768

(0.0079)
0.9460

(0.0053)
0.0000

(0.0000)

LQE-S
0.9422

(0.0053)
1.6393

(0.0086)
1.8092

(0.0096)
1.7573

(0.0093)
1.3774

(0.0080)
0.9458

(0.0053)
0.0000

(0.0000)

QERT

SQ
0.8872

(0.0059)
1.5602

(0.0082)
1.7124

(0.0101)
1.6650

(0.0099)
1.3060

(0.0092)
0.9068

(0.0069)
0.0000
(0.000)

LQE
0.8872

(0.0057)
1.5435

(0.0081)
1.6739

(0.0095)
1.6268

(0.0099)
1.2880

(0.0086)
0.9032

(0.0061)
0.0000

(0.0000)

LQE-S
0.8869

(0.0057)
1.5432

(0.0081)
1.6751

(0.0095)
1.6265

(0.0099)
1.2883

(0.0086)
0.9031

(0.0061)
0.0000

(0.0000)

All crossing loss values are multiplied by 10.

SQ and LQE-S tune the target quantile only, their tuning times are roughly equivalent; thus, we only
compare LQE and LQE-S. As shown in Table 7, LQE-S reduces the tuning time by approximately
K = 9 times compared to LQE. This result highlights the substantial reduction in computing time
achieved by LQE-S.

5. Conclusion

We introduce an ensemble learning method to improve quantile estimation and prediction of the ex-
isting machine learning (ML) models. LQE fits multiple local quantiles around a target and averages
them. One can adapt LQE to a broad class of quantile regression models. It enhances performance by
mitigating the large variance inherent in QR through the ensemble effect. Furthermore, LQE prevents
overfitting and quantile crossing, as well as providing smoother fits.

However, LQE can be time-consuming due to tuning multiple parameters. To alleviate computing
cost, we propose LQE-S, which tunes the parameter for the target quantile only and applies them to
all other local quantiles. Our numerical analysis demonstrates that the practical performance of LQE
and LQE-S are similar. In many cases, they achieve lower losses than single quantile (SQ) models.
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Table 6: The mean of check losses at τ = 0.1, 0.3, 0.5, 0.6, 0.8 and 0.9 and crossing losses (with the standard
error in the parenthesis) for 100 iterations with blog-feedback data

Model Method τ = 0.1 τ = 0.3 τ = 0.5 τ = 0.6 τ = 0.8 τ = 0.9
Crossing

loss

GBM

SQ
0.6587

(0.0007)
1.8637

(0.0038)
2.6291

(0.0040)
2.8722

(0.0053)
2.8243

(0.0055)
2.3605

(0.0058)
0.0419

(0.0010)

LQE
0.6594

(0.0007)
1.8384

(0.0025)
2.6264

(0.0043)
2.8433

(0.0051)
2.7719

(0.0047)
2.3181

(0.0045)
0.0120

(0.0003)

LQE-S
0.6585

(0.0007)
1.8410

(0.0032)
2.6173

(0.0045)
2.8325

(0.0049)
2.7943

(0.0047)
2.3046

(0.0052)
0.0217

(0.0005)

XGBoost

SQ
0.6472

(0.0007)
1.7298

(0.0028)
2.4075

(0.0035)
2.5948

(0.0038)
2.5811

(0.0050)
2.0892

(0.0050)
0.0042

(0.0002)

LQE
0.6447

(0.0007)
1.7147

(0.0023)
2.4136

(0.0033)
2.5957

(0.0035)
2.4986

(0.0042)
2.0545

(0.0047)
0.0008

(0.0000)

LQE-S
0.6451

(0.0007)
1.7168

(0.0023)
2.4099

(0.0033)
2.5916

(0.0035)
2.5394

(0.0045)
2.0566

(0.0049)
0.0009

(0.0000)

LightGBM

SQ
0.6476

(0.0009)
1.7415

(0.0025)
2.4428

(0.0031)
2.6361

(0.0042)
2.5567

(0.0044)
2.1662

(0.0051)
0.0199

(0.0005)

LQE
0.6441

(0.0008)
1.7219

(0.0022)
2.4136

(0.0031)
2.5923

(0.0035)
2.4956

(0.0042)
2.0526

(0.0045)
0.0081

(0.0002)

LQE-S
0.6447

(0.0008)
1.7235

(0.0025)
2.4153

(0.0031)
2.5979

(0.0036)
2.4960

(0.0041)
2.0611

(0.0047)
0.0080

(0.0002)

QRF

SQ
0.6562

(0.0006)
1.7598

(0.0035)
2.5075

(0.0044)
2.6787

(0.0045)
2.7937

(0.0057)
2.3508

(0.0044)
0.0000

(0.0000)

LQE
0.6507

(0.0007)
1.7417

(0.0027)
2.4938

(0.0038)
2.7328

(0.0042)
2.7427

(0.0044)
2.3342

(0.0033)
0.0000

(0.0000)

LQE-S
0.6562

(0.0007)
1.7727

(0.0031)
2.5376

(0.0046)
2.7047

(0.0040)
2.7953

(0.0050)
2.3549

(0.0040)
0.0000

(0.0000)

QERT

SQ
0.6572

(0.0006)
1.8804

(0.0030)
2.7714

(0.0048)
3.0800

(0.0052)
3.2064

(0.0052)
2.6951

(0.0046)
0.0000

(0.0000)

LQE
0.6566

(0.0006)
1.8664

(0.0026)
2.8146

(0.0041)
3.1106

(0.0047)
3.2092

(0.0049)
2.7455

(0.0038)
0.0000

(0.0000)

LQE-S
0.6571

(0.0066)
1.8687

(0.0027)
2.8138

(0.0041)
3.1087

(0.0046)
3.2153

(0.0045)
2.7524

(0.0037)
0.0000

(0.0000)

All crossing loss values are multiplied by 102.

Table 7: The mean of computation time (with the standard error in the parenthesis) for 5 iterations
Method τ = 0.1 τ = 0.3 τ = 0.5 τ = 0.6 τ = 0.8 τ = 0.9

LQE 32.82 (0.09) 38.30 (0.10) 39.94 (0.12) 40.92 (0.07) 38.53 (0.09) 35.42 (0.09)
LQE-S 3.66 (0.02) 4.32 (0.01) 4.60 (0.01) 4.61 (0.03) 4.33 (0.01) 3.97 (0.01)

Moreover, the reduction in quantile crossing is evident. The wiggly fits and quantile crossings from
the existing methods often significantly reduced.

This paper highlights the effect of ensembles near the target quantiles. We anticipate that LQE
will perform effectively for another machine learning and deep learning models as well, which is an
interesting area of our future research. In fact, the idea of LQE can be applied to the linear quantile
regression models, and we developed early stage of theories.

Acknowledgement

Yoonsuh Jung’s work was partially supported by National Research Foundation of Korea (NRF) grant
funded by Korea government (MIST)(No. 2022M3J6A1063595 and No. 2022R1F1A1071126).



640 Suin Kim, Yoonsuh Jung

Appendix A:

Table A.1: The mean of MSEs at τ = 0.1, 0.3, 0.5, 0.6, 0.8, and 0.9 and crossing losses (with their standard error
in the parenthesis) for 100 iterations under Scenario 1

Error Model Method τ = 0.1 τ = 0.3 τ = 0.5 τ = 0.6 τ = 0.8 τ = 0.9
Crossing

loss

χ2(3)

QSS

SQ
0.2052

(0.0121)
0.4101

(0.0210)
0.6479

(0.0345)
0.7735

(0.0429)
1.9008

(0.1272)
3.3899

(0.2110)
0.0149

(0.0052)

LQE
0.1623

(0.0078)
0.3019

(0.0172)
0.5834

(0.0338)
0.8083

(0.0479)
1.7572

(0.1289)
3.3624

(0.2347)
0.0000

(0.0000)

LQE-S
0.1609

(0.0075)
0.3332

(0.0155)
0.5848

(0.0337)
0.7888

(0.0470)
1.8121

(0.1257)
3.3386

(0.2308)
0.0000

(0.0000)

KQR

SQ
0.2136

(0.0164)
0.6109

(0.0330)
1.0233

(0.0554)
0.9323

(0.0537)
3.2260

(0.0961)
4.4850

(0.2688)
0.0243

(0.0125)

LQE
0.1811

(0.0128)
0.4587

(0.0253)
0.7616

(0.0439)
1.0328

(0.0589)
2.1058

(0.1260)
4.3697

(0.2677)
0.0000

(0.0000)

LQE-S
0.1578

(0.0107)
0.4846

(0.0255)
0.8431

(0.0502)
0.8401

(0.0481)
2.7638

(0.1600)
3.9785

(0.2732)
0.0003

(0.0002)

N(0, 1)

QSS

SQ
0.3305

(0.0136)
0.2083

(0.0103)
0.1939

(0.0091)
0.1993

(0.0078)
0.2296

(0.0100)
0.3078

(0.0182)
0.0038

(0.0025)

LQE
0.2642

(0.0122)
0.1621

(0.0078)
0.1423

(0.0058)
0.1529

(0.0060)
0.1913

(0.0081)
0.2645

(0.0148)
0.0000

(0.0000)

LQE-S
0.2661

(0.0122)
0.1606

(0.0079)
0.1631

(0.0064)
0.1535

(0.0061)
0.1928

(0.0085)
0.2687

(0.0153)
0.0000

(0.0000)

KQR

SQ
0.5124

(0.0243)
0.2645

(0.0136)
0.1623

(0.0083)
0.2261

(0.0114)
0.3335

(0.0131)
0.4203

(0.0215)
0.0040

(0.0018)

LQE
0.3561

(0.0179)
0.2138

(0.0115)
0.1417

(0.0070)
0.1451

(0.0067)
0.1999

(0.0092)
0.3056

(0.0144)
0.0000

(0.0000)

LQE-S
0.1578

(0.0107)
0.4846

(0.0255)
0.8431

(0.0502)
0.8401

(0.0481)
2.7638

(0.1600)
3.9785

(0.2732)
0.0003

(0.0002)

The crossing loss is calculated for τ′=0.1 and τ′′=0.3. The smallest values for each model are bolded for clarity. MSEs are
multiplied by 102, and the crossing loss by 103.
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Table A.2: The description of the parameters used for tuning in each ML models

Model Parameter Descriptions

GBM

n estimators The number of boosting stages to perform
max depth Maximum depth of a tree
subsample The fraction of samples for fitting the individual trees

learning rate Step size shrinkage used in update
max features The number of features to consider in each splits

XGBoost

nrounds The number of boosting stages to perform
max depth Maximum depth of a tree

min child weight Minimum sum of instance weight
gamma Minimum loss reduction required to make a partition
lambda L2 regularization term on weights

eta Step size shrinkage used in update

LightGBM

nrounds The number of boosting stages to perform
max depth Maximum depth of a tree
num leaves Maximum number of leaves in one tree

learning rate Step size shrinkage used in update

QRF & QERT

n estimators The number of trees in the forest
min samples split Minimum number of samples required to split

max depth Maximum depth of a tree
max features The number of features to consider in each splits

Table A.3: The parameter search range for simulations
Model Parameter Scenario 1 Scenario 2

GBM

n estimators (100, 1700) (100, 1500)
max depth [1, 2, 3, 4] [1, 2, 3, 4]
subsample [0.5, 0.7, 0.9] [0.5, 0.7, 0.9]

learning rate [0.01] [0.01]
max features [1] [2]

XGBoost

nrounds (2000, 5000) (2000, 5000)
max depth [1, 2, 3, 4] (1, 2, 3, 4)

min child weight [1, 2, 3, 4, 5] [1, 2, 3, 4, 5]
gamma [0, 0.001, 0.01, 0.1] [0, 0.001, 0.01, 0.1]
lambda [0, 0.01, 0.1, 1] [0, 0.01, 0.1, 1]

eta [0.01] [0.01]

LightGBM

nrounds (200, 1800) (400, 1600)
max depth [2, 4, 6, 8, 10] [1, 2, 3, 4, 5, 6]
num leaves [2, 4, 8, 16, 32] [2, 4, 6, 8, 10, 12, 14]

learning rate [0.01] [0.01]

QRF

n estimators (200, 1200) (800, 3000)
min samples split [1, 10, 20, 30, 40] [10, 20, 30, 40]

max depth [2, 4, 6, 8, 10] [2, 6, 10, 14, 18]
max features [1] [1, 2]

QERT

n estimators (200, 1200) (800, 3000)
min samples split [1, 10, 20, 30, 40] [10, 20, 30, 40]

max depth [2, 4, 6, 8, 10] [2, 6, 10, 14, 18]
max features [1] [1, 2]

The terms inside square brackets indicate discrete values, and the terms in the round brackets indicate a sequence of numbers.
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Table A.4: The parameter search range for the data used in real data analysis
Model Parameter Bike Concrete Blog feedback

GBM

n estimators [1000, 2000, 3000, 4000] [2000, 4000, 6000, 8000] [1000, 2000, 3000, 4000]
max depth [2, 4, 6] [2, 4, 6, 8] [2, 4, 6]
subsample [0.7, 0.9] [0.7, 0.9] [0.7, 0.9]

learning rate [0.01] [0.01] [0.1]
max features [4, 6, 8] [4, 6, 8] [4, 6, 8]

XGBoost

nrounds (2000, 6000) (2000, 6000) (3000, 7000)
max depth [2, 6, 10] [2, 6, 10] [2, 4, 8]

min child weight [2, 6, 10] [2, 6, 10] [2, 6, 10]
gamma [0, 0.001, 0.01, 0.1] [0, 0.001, 0.01, 0.1] [0, 0.001, 0.01, 0.1]
lambda [0, 0.01, 0.1, 1] [0, 0.01, 0.1, 1] [0, 0.01, 0.1]

eta [0.01] [0.01] [0.01]

LightGBM

nrounds (500, 3500) (500, 3500) (3000, 7000)
max depth [2, 4, 6, 8, 10] [2, 4, 6, 8, 10] [2, 4, 8]
num leaves [10, 20, 30, 40] [10, 20, 30, 40] [10, 20, 30]

bagging fraction [0.7, 0.9] [0.7, 0.9] [0.7, 0.9]
feature fraction [0.7, 0.9] [0.7, 0.9] [0.7, 0.9]

learning rate [0.01] [0.01] [0.1]
lambda l1 [1, 0.1, 0.01] [1, 0.1, 0.01] [1, 0.1, 0.01]

QRF

n estimators (500, 2000) (1000, 6000) [500, 1000, 2000]
min samples split [1, 5, 10, 20] [5, 10, 15] [5, 10, 20]

max depth [5, 10, 20, 30] [5, 10, 15] [10, 20, 30]
max features [3, 5, 10] [3, 5, 10] [5, 10, 20]

QERT

n estimators (500, 2000) (1000, 4000) [500, 1000, 2000]
min samples split [1, 5, 10, 20] [5, 10, 20] [5, 10, 20]

max depth [5, 10, 20, 30] [5, 10, 20] [10, 20, 30]
max features [3, 5, 10] [3, 5, 10] [5, 10, 20]

The terms inside square brackets indicate discrete values, and the terms in the round brackets indicate a sequence of numbers.
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