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Abstract
A general non-inferiority (NI) clinical trial is typically conducted using parametric testing methods with

large samples. However, patient recruitment challenges often hinder rare disease trials, leading to enrollment
failures. In this study, we introduce current parametric and nonparametric NI trial testing methods and propose
modifications to enhance the performance of the nonparametric approach. Through a comprehensive simulation
study with various sample sizes, data distributions, and sample ratios, we compare empirical levels and statistical
powers as criteria for evaluating performance. Our findings indicate that the modified nonparametric methods
outperformed the existing methods, particularly under conditions of small sample sizes and non-normal distri-
butions, offering valuable insights for improving the reliability and sensitivity of NI trials in the context of rare
diseases.

Keywords: non-inferiority clinical trial, nonparametric method, relative effect, rank-based, rare
disease. pseudo rank

1. Introduction

Most non-inferiority (NI) clinical trial is conducted with large-scale enrollment. With this scale, the
parametric testing method is used to confirm the non-inferiority in general. Hida and Tango (2011)
introduced a parametric t-test to assess the NI trial. In this approach, the mean of each treatment group
is used as the measure of the hypotheses, and the test statistic follows a Student’s t-distribution and
degrees of freedom vary according to variance’s homogeneity. However, in the case of rare diseases, it
is difficult to recruit patients who meet the eligibility criteria. In this case, a clinical trial is terminated
due to insufficient enrollment, and research on the rare disease could not persist. Therefore, there have
been some research on NI trials with nonparametric methods, which are less restrictive than parametric
methods. The nonparametric method is not affected by the normality of data and the homogeneity of
variance.

In situations where nonparametric methods are appropriate, enrollment is small scale or normality
of data is not assured, there have been several methods. In this paper, we consider the three-arm design
non-inferiority clinical trial. The three-arm design indicates that the clinical trial with experimental,
reference drug, and placebo. The importance of three-arm design is highlighted in various research
since we can show the assay sensitivity in the presence of a placebo arm. In the ICH E10 guideline
(2000), assay sensitivity is defined as the property of a clinical trial defined as the ability to distinguish
an effective treatment from a less effective or inefficient treatment. Thus, in many non-inferiority
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clinical trials, demonstrating assay sensitivity takes precedence over establishing non-inferiority. Park
and Kim (2014) proposed a ratio-shape formulation for the non-inferiority hypotheses. They utilized
a Hodges-Lehmann estimator to test this non-inferiority hypothesis. However, there is an alternative
approach to assessing nonparametric NI trials known as the ‘relative effect’ which uses the relative
effect as a measure of the hypothesis instead of the mean effect. Munzel (2009) introduced a ratio-
shaped hypothesis with relative effect.

In this paper, we introduce a modification of the method by Park and Kim (2014) applicable
in a three-arm NI trial, along with a modification of Munzel (2009) method utilizing unweighted
relative effect—a measure calculated with pseudo rank, offering advantages over traditional weighted
rank. While various NI trial testing methods have been proposed, comprehensive comparisons of their
performance remain scarce. Our primary focus lies in introducing and applying these methods. To
rigorously assess their performance and effectiveness, we conduct a comprehensive comparison with
existing testing methods through a carefully designed simulation study. By evaluating empirical levels
and statistical powers, we aim to provide valuable insights into the practical utility of these methods
in non-inferiority clinical trials.

This paper is structured as follows. Section 2 introduces existing NI trial testing methods, encom-
passing both parametric and nonparametric approaches. In Section 3, we present the modification of
the method by Park and Kim for three-arm clinical trials and propose the utilization of unweighted
relative effect in Munzel’s method. Section 4 presents the simulation results, where we evaluate the
performance of the testing methods. Finally, Section 5 concludes our results and initiates a discussion
on the implications of our findings.

2. Existing testing methods

2.1. Parametric method

Hida and Tango (2010) suggested a parametric testing method when a NI trial includes a single ex-
perimental, reference treatment and placebo. Assume that the primary endpoint under the three-arm
is Xi j, i = E,R, P, j = 1, . . . , ni, respectively. XE j , XR j and XP j are mutually independent and normally
distributed with unknown but common varianceσ2, that is, XE j N(µE , σ

2), j = 1, . . . , nE , XR j N(µR, σ
2),

j = 1, . . . , nR and XP j N(µP, σ
2), j = 1, . . . , nP. The total sample size is N = nE + nR + nP. Each

sample size of treatment group is not necessarily identical. The non-inferiority trial and assay sensi-
tivity null hypotheses are H0E : µE − µR ≤ −M2 and A0 : µR − µP ≤ M1. H0E is the hypothesis of
NI trial and A0 is the hypothesis of assay sensitivity. The corresponding alternative hypotheses are
H1E : µE − µR > −M2 and A1 : µR − µP > M1 respectively. M1 is the entire effect size of reference
drug and M2 is the largest clinically acceptable difference, i.e., non-inferiority margin. It is required
that M1 ≥ M2 = r × M1, where 0 < r ≤ 1. Choosing the proper value of M1 and M2 is found in FDA
guidance for non-inferiority trials (2016).

To test the null hypotheses H0E and A0, Student t-test is used. TE is the test statistic for NI trial

TE =
X̄E − X̄R + M2

σ̂ER
√

(1/nE) + (1/nR)
,

and TA is the test statistics for proving assay sensitivity.

TA =
X̄R − X̄P − M1

σ̂RP
√

(1/nR) + (1/nP)
,
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where X̄i = (1/ni)
∑n j

j=1 Xi j, i = E,R, P, j = 1, . . . , ni. And the homogeneous variance σ̂ER and σ̂RP are
defined σ̂2

ER = ((nE − 1)sE
2 + (nR − 1)sR

2)/nE + nR − 2 and σ̂2
RP = ((nR − 1)sR

2 + (np − 1)sP
2)/nR + nP − 2

where sE
2, sR

2 and sP
2 denote a sample variance of experimental, reference and placebo treatments,

respectively. The test statistic TE follows a t-distribution with degrees of freedom (nE + nR − 2) and
TA follows a t-distribution with degrees of freedom (nR + nP − 2). And corresponding 100× (1− α)%
confidence intervals are(X̄E − X̄R

)
− t α

2 (nE+nR−2) × σ̂ER

√
1

nE
+

1
nR
,
(
X̄E − X̄R

)
− t α

2 (nE+nR−2) × σ̂ER

√
1

nE
+

1
nR

 ,
and (X̄R − X̄P

)
− t α

2 (nR+nP−2) × σ̂RP

√
1
nR

+
1
np
,
(
X̄R − X̄P

)
− t α

2 (nR−nP−2) × σ̂RP

√
1
nR

+
1
nP


respectively.

In case of heterogenous variance, the identical confidence interval is applied and the only differ-
ence is degrees of freedom. Detailed formulas are found in Huang et al. (2015).

2.2. Nonparametric methods

As mentioned in the introduction, we can divide nonparametric NI trial testing methods into two cat-
egories. The first category involves NI hypotheses testing with mean effect, while the other category
focuses on NI hypothesis testing with relative effect. We first introduce the method by Park and Kim
(2014). However, in our comparison scenario assuming the clinical trial with a three-arm design,
Park-Kim method is not included because Park-Kim method is applied in case of two-arm clinical
trial which contains only a single experimental drug and reference drug, not a placebo.

2.2.1. Park-Kim method

Park and Kim (2014) introduced a nonparametric NI trial based on the Wilcoxon rank-sum test and
Hodges-Lehmann estimator of reference drug. Let XEi , i = 1, . . . , nE and XR j , j = 1, . . . , nR are the
primary endpoints from the experimental group and reference group respectively. Then the null hy-
pothesis of non-inferiority trial is H0E : (µE−µR)/µR ≤ λ and the corresponding alternative hypothesis
is H1E : (µE − µR)/µR > λ where λ is M2 − 1 and M2 is a non-inferiority margin.

For all XEi and XR j (i = 1, . . . , nE , j = 1, . . . , nR), define Qi j as Qi j = XR j−XEi and its order statistics
as Q(1),Q(2), . . . ,Q(nEnR). Then the rank-sum statistics are defined as median of Qi j. Therefore, upper
and lower limit of 100 · (1−α)% confidence interval of Wilcoxon rank sum test is LLw = Q(Cα),ULw =

Q(nEnR+1−Cα), respectively, where Cα = ((nE(2nR + nE + 1))/2) + 1 − wα and wα is upper 100 × αth

quantile of Wilcoxon rank sum statistics WR jR j′ = (XR j + X′R j
)/2 when R j ≤ R j

′, (R j,R j
′ = 1, . . . , nR).

Consequently, the lower and upper limit of nonparametric 100 × (1 − α)% confidence interval of
(µE − µR)/µR is

LLN =
Q(cα)

med(WR jR j′)
′ R j ≤ R j

′,
(
R j,R j

′ = 1, . . . , nR

)

ULN =
Q(nEnR+1−Cα)

med(WR jR j′)
′ R j ≤ R j

′, (R j,R j
′ = 1, . . . , nR)

respectively. In Section 3, we reformulate this method to be used in three-arm design.
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2.2.2. Park-Kim method

Before we explain the Munzel method, the relative effect needs to be defined first. Let

Xi j ∼ Fi, i = 1, . . . , k, j = 1, . . . , ni,

where i denotes treatment group and j denotes the individual within the ith treatment. Fi(x) = P(Xi j <
x) + (1/2)P(Xi j = x) = (1/2)[Fi

−+ Fi
+] denotes the average of the left and right continuous version of

the distribution function, where Fi
− = P(X < x) is the left-continuous version and Fi

+ = P(X ≤ x) is
the right-continuous version of the cumulative distribution function (cdf) of X. This statistical model
does not include any parameter, and it could be used to describe the influence of the treatment to the
observation. Thus, the marginal distribution function can be used to describe the relative effect

pi =

∫
HdFi = P

(
Xi j < x

)
+

1
2

P
(
Xi j = x

)
, i = 1, . . . , k, j = 1, . . . , ni,

where H denotes a mean distribution of F. Additional explanation of relative effect is found in Brunner
et al. (2018, 2021).

Munzel (2009) suggested a non-inferiority testing and assay sensitivity null hypothesis H0E :
(pE − pR)/pR − pP ≤ −δ and A0 : pR − pP ≤ Q1 and corresponding alternative hypotheses are
H1E : (pE − pR)/pR − pP > −δ and A1 : pR − pP > Q1. Where pE , pR and pP are relative effect
of experimental, reference and placebo group respectively, and Q1 is entire relative effect size of R
(same as M1 in parametric setting) and Q2 = δ(pR − pP) is the margin of the test. Thus, δ plays role
in parametric testing as ‘γ’.

Applying Fieller’s theorem, the two-sided (1 − α) × 100% confidence interval for ratio (pE −

pR)/pR − pP is,

1
(1 − g)

[
P̂E − P̂R

P̂R − P̂P
−

g · cov( p̂E − p̂R, p̂R − p̂P)
var( p̂R − p̂P)

±
z1−α/2

p̂R − p̂P

√
C
]
,

where

g =
z2

1− α
2
· var (pR − pP)

( p̂R − p̂P)2 ,

and

C = var ( p̂R − p̂P) − 2 ·
p̂E − p̂R

P̂R − p̂P
· cov(p̂E − p̂R, p̂R − p̂P) +

(
p̂E − p̂R

p̂R − p̂P

)2

· var( p̂R − p̂P)

− g ·
(
var( p̂E − p̂R) −

(cov( p̂E − P̂R, p̂R − p̂P))2

var( p̂R − p̂P)

)
.

Also, define Rik as vector of overall rank of Xik among all N observations and R(i)
ik as internal rank

of Xik among all ni observations in the ith treatment group and R(− j)
ik as partial rank of Xik among all
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N − n j observations except those in the jth treatment group, then

var
(√

N pi

)
=

1
N

 1
ni(ni − 1)

Rt
i · Ri +

1
n2

i

3∑
r=1

nr

nr − 1
Rt

ri · Rri

 , and

cov
(√

N p̂i,
√

pi

)
=

1
N

 1
nin j

3∑
r=1

nr

nr − 1
Rt

ri · Rr j −
1

n j(ni − 1)
Rt

i · Ri j −
1

ni(n j − 1)
Rt

j · R ji

 ,
where Ri = {Rik − R(i)

ik − R̄i. + R̄(i)
i. }k=1,...,ni and Ri j = {Rik − R(− j)

ik − R̄i. + R̄(− j)
i. }k=1,...,ni for j , i and

i = E,R, P, and r = 1, 2, 3 represent experimental, reference and placebo respectively.

3. Proposed methods

3.1. Modified Park-Kim method

In this section, we modify the Park-Kim method by reformulating it in three-arm design case. We add
placebo arm in the hypothesis, and the NI hypothesis H0 : (µE − µR)/µR − µP ≤ −γ vs. (µE − µR)/µR −

µP > −γ, where r is pre-specified margin. We have retained the numerator and made a modification
to the denominator estimator, changing it to two sample of Hodges-Lehmann estimator.

Suppose ∆̂ = median{(XR j − WPs ), j = 1, . . . , nR, s = 1, . . . , nP}, where XR j is the jth response
of reference treatment and WPs is the sth response of placebo treatment. And then define the order
statistic of (XR j−WPs ) as H(1),H(2), . . . ,H(nRnP). When nRnP is odd, nRnP = 2b+1 then b = (nRnP−1)/2
, the Hodges-Lemann estimator would be ∆̂ = H(b+1), and when nRnP is even, nRnP = 2b then
b = (nRnP)/2, the Hodges-Lemann estimator would be ∆̂ = (H(b) + H(b+1))/2. Therefore, the lower
and upper limit of modified nonparametric 100 × (1 − α)% confidence interval of (µE − µR)/µR − µP

is

LLN =
Q(Cα)

∆̂
, R j ≤ R j

′,
(
R j,R j

′ = 1, . . . , nR

)
ULN =

Q(nEnR+1−Cα)

∆̂
, R j ≤ R j

′,
(
R j,R j

′ = 1, . . . , nR

)
respectively.

3.2. Modified Munzel method using unweighted relative effect

In section 2.2.2, we introduced the concept of a ‘usual rank’, which is calculated based on the to-
tal number of observations. Pseudo rank, on the other hand, is slightly different. It represents an
unweighted rank, where we consider the total number of groups instead of the total number of obser-
vations. We refer to relative effects calculated using pseudo rank as ‘fixed relative effects’ because
they are not influenced by the number of observations. The concept of unweighted relative effect was
suggested by Brunner and Puri (1996) for the first time, and then asymptotic properties of unweighted
relative effect was demonstrated by Domhof (2001). Brunner et al. (2021) cautioned that the weighted
relative effect can vary according to the sample ratio, making it an unstable measure for use in non-
inferiority trials. Therefore, we opted to use the pseudo rank method, which remains stable and is not
affected by the sample ratio.
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Table 1: Performances for clustered DIC data after 1000 iterations
Distribution Normal distribution Gamma distribution(β = 2) Exponential distribution

Parameters (µE , µR, µP) (αE , αR, αP) (λE , λR, λP)

(σ2
E , σ2

R, σ2
P)

(µE , µR, µP) (µE , µR, µP)
(σ2

E , σ
2
R, σ

2
P) (σ2

E , σ
2
R, σ2

P)

Scenarios

(12, 14, 0) (12, 14, 0) (4, 5, 1) (0.5, 0.25, 5)

(2, 2, 2) (2, 1, 1) (8, 10, 2) (2, 4, 0.2)
(16, 20, 4) (4, 16, 0.04)

(14, 14, 0) (14, 14, 0) (5, 5, 1) (0.25, 0.25, 5)

(2, 2, 2) (2, 1, 1) (10, 10, 2) (4, 4, 0.2)
(20, 20, 4) (16, 16, 0.04)

Table 2: Sample ratio and size of simulated scenarios

Ratio Small samples Large samples
nE : nR : nP (nE , nR, nP) (nE , nR, nP)

1 : 1 : 1 (20, 20, 20) (50, 50, 50)
1 : 2 : 1 (20, 40, 20) (50, 100, 50)
2 : 2 : 1 (40, 40, 20) (100, 100, 50)
2 : 1 : 1 (40, 20, 20) (100, 50, 50)

Let U = (1/K)
∑k

i=1 Fi denote the unweighted mean distribution. As mentioned above, it is not af-
fected by total number of observations. Similar to usual rank, respective empirical version of function
U is Û = (1/K)

∑k
i=1 F̂i. And let Ri j

ϕ represents the pseudo rank of Xi j among all k treatment groups,
then Ri j

ϕ is defined as

Ri j
ϕ =

1
2

+ NÛ
(
Xi j

)
=

1
2

+
N
k

Σ
nr
l=1c

(
Xi j − Xrl

)
,

where Û(x) = (1/k)Σk
r=1Fr(x) denotes the unweighted mean of empirical distribution functions. It can

be also estimated consistently by the simple plug-in estimator

p̂ϕi =

∫
UdF̂i =

1
N

(
R̄ϕ

i. −
1
2

)
,

where R̄ϕ
i. = (1/ni)Σ

ni
j=1Rϕ

i j and Û = (1/k)Σk
r=1F̂r denotes the unweighted mean of empirical distri-

butions F̂1, . . . , F̂r. The value pϕi quantifies an effect of the distribution Fi with respect to the un-
weighted mean distribution U. Fixed relative effect p̂ϕi is also related to mean of the pseudo rank
R̄ϕ

i. . The only difference between relative effect and fixed relative effect lies in the replacement of
Ŵ(Xi j) with Û(Xi j). Therefore, the application unweighted relative effect to Munzel method is sim-
ply substituting (weighted) relative effect to unweighted relative effect. The null hypotheses are
H0E : (pϕE − pϕR)/Pϕ

R − pϕp ≤ −δ and A0 : Pϕ
R − Pϕ

P ≤ Q1. The corresponding alternative
hypotheses are H1E : (pϕE − pϕR)/pϕR − pϕp > −δ and A1 : Pϕ

R − Pϕ
P > Q1, respectively. The

two-sided (1−α)× 100% confidence interval for ratio (pϕE − pϕR)/pϕR − pϕP is exactly identical with
just substituting pi to pϕi, i = E,R, P.

4. Simulation study

4.1. Simulation scheme

To assess the performance of the testing methods introduced in the previous sections, we conducted
an extensive simulation study. The criteria for demonstrating its performance are empirical level and
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Table 3: Assay sensitivity margins (M1 and Q1) and NI margins (M2 and Q2) of each distribution and testing
method

Parametric method Nonparametric method
M1 M2 Q1 Q2

Normal distribution 6 2.5 0.6 0.3
Gamma distribution 4 2 0.2 0.15

Exponential distribution 2.5 1.5 0.4 0.2

statistical power. We aim to assess how the performance of the testing methods vary under various sit-
uations. We generate the data from three distributions (normal, gamma and exponential distribution).
For the normal distribution, we consider both equal variance and unequal variance cases. In case of
the gamma distribution, we used two different shape parameters (α) while keeping the rate parameter
fixed (β = 2). Similarly, for the exponential distribution, we employed two rate parameters (λ). We
also consider the four types of sample ratios reflecting the real-world situations. Additionally, sample
size is also an important factor, and thus we have set the ratio 1 as equivalent to 20 and 50 people in
small sample and large samples, respectively. Sample ratio and sample size variation is displayed in
Table 2. The distribution of data used in simulation is displayed in Table 1.

For normal distribution case, we consider a total of four scenarios considering both homogeneous
variance and heterogeneous variance. For gamma and exponential distribution cases, two scenarios
are used in simulation study.

The first step of evaluating performance of testing methods is checking the empirical level. We
calculated and compared to nominal level before proceeding to the statistical power comparison. We
iterate a total of 10,000 times for each testing method, and thus the empirical level is considered valid
when if falls within the interval [0.0457, 0.0543]. If the empirical level deviates from this interval,
the comparison of statistical power becomes unreliable. After confirming that the empirical level
is satisfied, statistical power is calculated. As in Hinda and Tango (2011), the power of the testing
procedure is defined as

Power = Pr
{
TE > tα/2 (nE + nR − 2) ∩ TA > tα/2 (nR + nP − 2) | H0E , A0

}
.

Setting the NI trial and assay sensitivity margin is also crucial in NI trial. The margins of para-
metric testing methods denoted by M1 and M2 are the same as in the previous studies. Subsequently,
the corresponding margins of nonparametric testing methods, labeled as Q1 and Q2 , are chosen based
on the well-known property

pi =

∫
HdFi =

1
N

k∑
h=1

nh · Φ

(
µi − µh

σh
√

2

)
.

It means that Φ is almost linear around 0.5, i.e., it is approximately linearly connected to set
the nonparametric effect similar to parametric effect. Thus, gamma and exponential distribution are
also applied to its property using normal approximation. The margins for each testing method and
distribution are demonstrated in Table 3.

Additionally, an assay sensitivity test must be conducted before initiating an NI trial. The NI trial
is performed only after confirming assay sensitivity. If assay sensitivity is not established, the NI trial
is not conducted and the simulation is terminated. Thus, the simulation steps are follows:

1) Generate data from each distribution with predefined mean, variance, or parameters.
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Table 4: Levels for NI trial hypothesis testing in case of sample ratio (nE , nR, nP) = (1 : 1 : 1) : small samples,
nominal level 0.05, from 10,000 random iterations

Distribution (µE , µR, µP) ( nE
N , nR

N , nP
N

)
, 1

d M-UR MM-PR M-PK HT-P
(σ2

E , σ
2
R, σ

2
P)

Normal dist.

(12, 14, 0)

(
1
3 ,

1
3 ,

1
3

)
, 1

3

0.0493 0.0493 0.0521 0.0497(2, 2, 2)
(14, 14, 0) 0.0492 0.0492 0.0518 0.0504(2, 2, 2)
(12, 14, 0) 0.0508 0.0508 0.0511 0.0501(2, 1, 1)
(14,14,0) 0.0510 0.0510 0.0520 0.0496(2,1,1)

Gamma dist.

(αE,, αR, αP)
M-UR MM-PR M-PK HT-P

(β = 2)

(µE,, µR, µP)
(σ2

E , σ
2
R, σ

2
P)

(4, 5, 1)
0.0513 0.0513 0.0465 0.0307(8, 10, 2)

(16, 20, 4)
(5, 5, 1)

0.0507 0.0507 0.0462 0.0314(10, 10, 2)
(20, 20, 4)

Exponential dist.

(λE , λR, λP)
M-UR MM-PR M-PK HT-P(µE , µR, µP)

(σ2
E , σ

2
R, σ

2
P)

(0.5, 0.25, 5)
0.0489 0.0489 0.0527 0.0256(2, 4, 0.2)

(4, 16, 0.04)
(0.25, 0.25, 5)

0.0494 0.0494 0.0522 0.0263(4, 4, 0.2)
(16, 16, 0.04)

M-UR = Munzel-usual rank; MM-PR = modified Munzel-pseudo rank; M-PK = modified Park-Kim; HT-P = Hida-Tango
parametric

2) Apply each testing method to the data and determine whether the hypothesis is rejected or ac-
cepted.

3) Repeat these steps 10,000 times for each method.

4) Calculate the empirical level and statistical power of each testing method.

All simulation studies were conducted using programming version 4.1.2 (R project homepage:
http://www.r-project.org). The author developed the codes for generating rank statistics and imple-
menting all testing methods from scratch.

4.2. Simulation results

To improve the readability of the tables, the abbreviations have been employed in the simulation result
tables. Abbreviations are as follows: ‘HT-P’ (Hida-Tango parametric method), ‘M-PK’ (modified
Park-Kim method), ‘M-UR’ (Munzel method using usual rank), ‘MM-PR’ (modified Munzel method
using pseudo rank).
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Table 5: Levels for NI trial hypothesis testing in case of sample ratio (nE , nR, nP) = (2 : 2 : 1) : small samples,
nominal level 0.05, from 10,000 random iterations

Distribution (µE , µR, µP) ( nE
N , nR

N , nP
N

)
, 1

d M-UR MM-PR M-PK HT-P
(σ2

E , σ
2
R, σ

2
P)

Normal dist.

(12, 14, 0)

(
2
5 ,

2
5 ,

1
5

)
, 1

3

0.0480 0.0481 0.0513 0.0508(2, 2, 2)
(14, 14, 0) 0.0513 0.0495 0.0480 0.0506(2, 2, 2)
(12, 14, 0) 0.0503 0.0494 0.0519 0.0497(2, 1, 1)
(14, 14, 0) 0.0505 0.0500 0.0522 0.0493(2, 1, 1)

Gamma dist.

(αE,, αR, αP)
M-UR MM-PR M-PK HT-P

(β = 2)

(µE,, µR, µP)
(σ2

E , σ
2
R, σ

2
P)

(4, 5, 1)
0.0516 0.0513 0.0470 0.0333(8, 10, 2)

(16, 20, 4)
(5, 5, 1)

0.0518 0.0506 0.0473 0.0343(10, 10, 2)
(20, 20, 4)

Exponential dist.

(λE , λR, λP)
M-UR MM-PR M-PK HT-P(µE , µR, µP)

(σ2
E , σ

2
R, σ

2
P)

(0.5, 0.25, 5)
0.0513 0.0483 0.0521 0.0276(2, 4, 0.2)

(4, 16, 0.04)
(0.25, 0.25, 5)

0.0495 0.0509 0.0525 0.0289(4, 4, 0.2)
(16, 16, 0.04)

M-UR = Munzel-usual rank; MM-PR = modified Munzel-pseudo rank; M-PK = modified Park-Kim; HT-P = Hida-Tango
parametric

4.2.1. Empirical level for each testing method

To assess the performance of different testing methods in determining empirical levels, we conducted
simulations for scenarios involving an experimental drug. Four testing methods, as described in Sec-
tions 2 and 3, were compared. While we cannot present all simulation result tables here, we highlight
key findings below.

In scenarios where sample ratios remain consistent across the experimental drug, reference drug,
and placebo, both the M-UR and MM-PR methods exhibit identical relative effects. Consequently,
these methods demonstrate the same empirical level. For instance, in Table 4, when the sample ratios
are 1 : 1 : 1, the empirical levels of M-UR and MM-PR across various distributions and parameters
are consistent. All nonparametric testing methods demonstrate valid empirical levels in both normal
and non-normal settings. Conversely, the parametric testing method proves to be invalid in all non-
normal situations. Particularly, when data are generated under gamma and exponential distributions,
the empirical level of the parametric testing method falls significantly below 0.0457, the lower limit
of the nominal level of 0.5. The result demonstrates consistency when sample ratios are not equal
across the experimental drug, reference drug, and placebo (see Table 5).
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4.2.2. Statistical power of each testing method

The statistical power analysis reveals insights into the performance of each testing method under
various conditions. When the sample ratio remains consistent across the experimental drug, reference
drug, and placebo, the relative effects using usual rank and pseudo rank are identical. Consequently,
as shown in Table 6, the statistical power of M-UR and MM-PR mirrors their empirical levels.

In Table 6, additional information about significant results is presented. Parametric testing meth-
ods demonstrate poor statistical power when data are generated from non-normal distributions, such
as gamma and exponential distributions, with statistical power close to 0.5. We also compared statis-
tical powers among different sample ratios. Four sample ratios were simulated, with a sample ratio
of 2 : 2 : 1 exhibiting the highest statistical power. Although not tabulated here, sample ratios of
2 : 1 : 1, 1 : 2 : 1, and 1 : 1 : 1 follow in descending order. The statistical power of the 2 : 2 : 1
sample ratio is detailed in Table 7.

In the case of a sample ratio of 1 : 1 : 1, the parametric testing method demonstrates the highest
statistical power under normal distribution, while the M-PK method exhibits the lowest. Conversely,
in non-normal situations, the parametric testing method shows the lowest statistical power, with the
order established as P < M−PK < M−UR = MM−PR (see Table 6). Under a non-equal sample ratio
of 2 : 2 : 1, the statistical power of M-UR and MM-PR differs, with the MM-PR method exhibiting
higher statistical power than M-UR in both normal and non-normal situations. The order established
is P < M − PK < M − UR < MM − PR (see Table 7).

5. Conclusion

We have presented various NI trial methods, including both parametric and nonparametric approaches.
Additionally, we modified Park-Kim method using two sample Hodes-Lehmann estimator. Also, in
nonparametric method using relative effect, we applied unweighted relative effect which uses the
pseudo rank. Pseudo rank is calculated only with the number of the treatment groups, not affected
by the sample ratio of each treatment group. So, it is a fixed measure while usual rank is changed its
value according to the sample ratio and thus yields unstable measure.

Now we summarize the major findings from our simulation studies.

1. Parametric testing methods demonstrate superiority under normal distribution, while among non-
parametric methods, MM-PR exhibits the highest statistical power. Conversely, in non-normal
scenarios, parametric methods falter, while MM-PR consistently display superior performance.

2. Notably high statistical power is observed in scenarios with a ratio of 2 for experimental drugs and
the reference drug, and a ratio of 1 for the placebo.

3. Testing method based on unweighted relative effect (MM-PR) consistently outperform those based
on weighted relative effect (M-UR).

4. Statistical power tends to be higher in situations with larger sample sizes. Particularly, the MM- PR
method shows comparable performance to parametric methods in normal cases, while excelling in
both normal and non-normal scenarios.

5. In small sample scenarios, the MM-PR method exhibits satisfactory statistical power, highlighting
its effectiveness, especially in trials with limited sample availability, such as those for rare diseases.

For ease of comparison, we converted Table 7 into a bar graph (Figure 1). Scenarios 1 to 8 represent
different distributions listed in Table 7. For example, Scenario 1 is a normal distribution with means
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Table 6: Statistical power for NI trial hypothesis testing in case of sample ratio (nE , nR, nP) = (1 : 1 : 1) : small
samples, nominal level 0.05, from 10,000 random iterations

Distribution (µE , µR, µP) ( nE
N , nR

N , nP
N

)
, 1

d M-UR MM-PR M-PK HT-P
(σ2

E , σ
2
R, σ

2
P)

Normal dist.

(12, 14, 0)

(
1
3 ,

1
3 ,

1
3

)
, 1

3

0.850 0.850 0.552 0.911(2, 2, 2)
(14, 14, 0) 0.857 0.857 0.565 0.917(2, 2, 2)
(12, 14, 0) 0.857 0.857 0.565 0.917(2, 1, 1)
(14, 14, 0) 0.863 0.863 0.572 0.923(2, 1, 1)

Gamma dist.

(αE,, αR, αP)
M-UR MM-PR M-PK HT-P

(β = 2)

(µE,, µR, µP)
(σ2

E , σ
2
R, σ

2
P)

(4, 5, 1)
0.883 0.883 0.617 0.507(8, 10, 2)

(16, 20, 4)
(5, 5, 1)

0.908 0.908 0.625 0.512(10, 10, 2)
(20, 20, 4)

Exponential

(λE , λR, λP)
M-UR MM-PR M-PK HT-P

dist.

(µE , µR, µP)
(σ2

E , σ
2
R, σ

2
P)

(0.5, 0.25, 5)
0.872 0.872 0.497 0.482(2, 4, 0.2)

(4, 16, 0.04)
(0.25, 0.25, 5)

0.898 0.898 0.504 0.493(4, 4, 0.2)
(16, 16, 0.04)

M-UR = Munzel-usual rank; MM-PR = modified Munzel-pseudo rank; M-PK = modified Park-Kim; HT-P = Hida-Tango
parametric.

(12, 14, 0) and variances (2, 2, 2), while Scenario 6 is a gamma distribution with shape parameters (5,
5, 1), means (10, 10, 2), and variances (20, 20, 4). Each method is represented by different colors. The
HT-P method (light grey) performed well in Scenarios 1–4 (normal distributions) but was inferior in
Scenarios 5–8 (non-normal distributions). The MM-PR method maintained its position as the second
best in Scenarios 1–4 and outperformed in Scenarios 5–8.
We anticipate that our proposed MM-PR method will be particularly useful in rare disease clinical
trials, where sample sizes are limited, owing to its minimal susceptibility to data distribution. Addi-
tionally, our ongoing research into nonparametric testing methods for cases involving multiple exper-
imental drugs aims to provide further insights into the complexities of relative effect estimation and
variance-covariance estimation. All simulation studies were conducted using programming version
4.1.2 (R project homepage: http://www.r-project.org). The author developed the codes for generating
rank statistics and implementing all testing methods from scratch.
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Table 7: Statistical power for NI trial hypothesis testing in case of sample ratio (nE , nR, nP) = (2 : 2 : 1) : small
samples, nominal level 0.05, from 10,000 random iterations

Distribution (µE , µR, µP) ( nE
N , nR

N , nP
N

)
, 1

d M-UR MM-PR M-PK HT-P
(σ2

E , σ
2
R, σ

2
P)

Normal dist.

(12, 14, 0)

(
1
2 ,

1
4 ,

1
4

)
, 1

3

0.848 0.859 0.557 0.913(2, 2, 2)
(14, 14, 0) 0.860 0.869 0.575 0.925(2, 2, 2)
(12, 14, 0) 0.851 0.863 0.565 0.919(2, 1, 1)
(14, 14, 0) 0.867 0.875 0.584 0.930(2, 1, 1)

Gamma dist.

(αE,, αR, αP)
M-UR MM-PR M-PK HT-P

(β = 2)

(µE,, µR, µP)
(σ2

E , σ
2
R, σ

2
P)

(4, 5, 1)
0.892 0.903 0.629 0.519(8, 10, 2)

(16, 20, 4)
(5, 5, 1)

0.913 0.920 0.635 0.523(10, 10, 2)
(20, 20, 4)

Exponential

(λE , λR, λP)
M-UR MM-PR M-PK HT-P

dist.

(µE , µR, µP)
(σ2

E , σ
2
R, σ

2
P)

(0.5, 0.25, 5)
0.876 0.884 0.514 0.492(2, 4, 0.2)

(4, 16, 0.04)
(0.25, 0.25, 5)

0.904 0.910 0.517 0.503(4, 4, 0.2)
(16, 16, 0.04)

M-UR = Munzel-usual rank; MM-PR = modified Munzel-pseudo rank; M-PK = modified Park-Kim; HT-P = Hida-Tango
parametric.

Figure 1: Bar graph comparing statistical power across methods (based on Table 7).
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