DOI QR코드

DOI QR Code

Experimental Study on the Fracture Permeability by Proppant Distribution in Shale Gas Reservoirs

셰일가스 저류층에서 지지체 분포에 따른 균열 투과도 실험 연구

  • Hyunsang Yoo (Dept. of Engery and Resources Engineering, Chonnam National University) ;
  • Junggyun Kim (Korea Gas Corporation Research Institute, Korea Gas Corporation) ;
  • Jeonghwan Lee (Dept. of Engery and Resources Engineering, Chonnam National University)
  • 유현상 (전남대학교 에너지자원공학과) ;
  • 김정균 (한국가스공사) ;
  • 이정환 (전남대학교 에너지자원공학과)
  • Received : 2024.07.26
  • Accepted : 2024.09.14
  • Published : 2024.09.30

Abstract

This study presents the fracture permeability measurements considering the proppant size, distribution and overburden pressure to analyze the effect of the proppant distribution on the fracture permeability in shale gas reservoirs. From the results, the fracture permeability increased with larger proppant size and higher proppant distribution, but the permeability decreased with higher overburden pressure. For the 40/70 mesh proppant, the average fracture permeability reduction with decreasing proppant distribution ranged from 32 to 57%, and those of with decreasing overburden pressure ranged from 29 to 78%, confirming that decreasing proppant distribution had a greater effect on fracture permeability reduction. Based on the experimental data, the fracture propagation regions were determined and the fracture permeability decreased with deeper propagation regions. Using these results, the fracture permeability was determined according to the fracture propagation region and the decrease in fracture permeability with overburden pressure in each region was obtained. The decreasing tendency of fracture permeability in the fracture propagation zone with overburden pressure can be applied to the production evaluation of shale gas reservoirs with developed fracture zones.

본 연구에서는 셰일가스 균열 지지체(proppant) 분포의 변화가 균열 투과도에 미치는 영향을 분석하기 위해 균열 지지체의 크기, 분포 함량, 그리고 하중 압력(overburden pressure) 변화에 따른 균열 투과도 측정 실험을 수행하였다. 균열 투과도 측정 실험결과, 지지체는 크기와 분포 함량이 클수록 균열 투과도가 높게 산출되었으며, 하중 압력이 증가할수록 균열 투과도는 점차 감소하였다. 40/70 mesh 지지체의 경우 지지체 분포 감소에 따른 평균 균열 투과도 감소율은 32~57% 이며, 하중 압력 감소에 따른 평균 균열 투과도 감소율은 29~78%로 나타나 지지체 분포의 감소가 균열 투과도 감소에 더 큰 영향을 미치는 것을 확인하였다. 실험결과를 바탕으로 균열 지지체의 분포 함량과 크기에 따라 균열 전파 영역을 구분하였으며, 균열 전파 영역이 깊어질수록 균열 투과도는 감소하였다. 이러한 결과를 기반으로 균열 전파 영역에 따른 균열 투과도를 산출하였고 각 영역에서 하중 압력에 따른 균열 투과도 감소를 확인하였다. 균열 전파 영역 내 균열 투과도의 하중 압력에 따른 감소 경향은 파쇄 균열대가 발달한 셰일가스 저류층의 생산 평가에 활용될 수 있다.

Keywords

Acknowledgement

본 연구는 국토교통부/국토교통과학기술진흥원의 지원으로 수행되었습니다(과제번호 RS-2022-00143541). 또한, 본 연구는 한국에너지기술평가원(KETEP)의 지원을 받아 수행되었습니다(No. 20212010200010).

References

  1. Yan, T., Li, W., and Bi, X., "An Experimental Study of Fracture Initiation Mechanisms during Hydraulic Fracturing", Petroleum Science, 8, 87-92, (2011)
  2. Li, J. H., Li, B. B., Cheng, Q. Y., and Gao, Z. "Characterization of the fracture compressibility and its permeability for shale under the effects of proppant embedment and compaction: A preliminary study", Petroleum Science, 19(3), 1125-1138, (2022)
  3. Kern, L. R., Perkins, T. K., and Wyant, R. E., "The Mechanics of Sand Movement in Fracturing", Journal of Petroleum Technology, 11(7), 55-57, (1959)
  4. Daneshy, A. A., "Numerical Solution of Sand Transport in Hydraulic Fracturing", Journal of Petroleum Technology, 30(1), 132-140, (1978)
  5. Ouyang, S., Carey, G. F., and Yew, C. H., "An Adaptive Finite Element Scheme for Hydrauilc Fracturing with Proppant Transport", International Journal for Numerical Methods in Fluids, 24, 645-670, ( 1998)
  6. Dontsov, E. V. and Peirce, A. P., "Proppant Transport in Hydraulic Fracturing: Crack Tip Screen-out in KGD and P3D Models", International Journal of Solids and Structure, 63, 206-218, (2015)
  7. Jia, B. and Xian, C. G., "Permeability measurement of the fracture-matrix system with 3D embedded discrete fracture model", Petroleum Science, 19(4), 1757-1765, (2022)
  8. Davies, D. R. and Kulper, T. O. H., "Fracture Conductivity in Hydraulic Fracture Stimulation", Journal of Petroleum Technology, 40(5), 550-552, (1988)
  9. Zheng, X., Chen, M., Hou, B., Ye, Z., Wang, W., Yin, C. and Chen, X., "Effect of Proppant Distribution Pattern on Fracture Conductivity and Permeability in Channel Fracturing", Journal of Petroleum Science and Engineering, 149, 98-106, (2017)
  10. Seidle, J. P., Jeansonne, M. W. and Erickson, D. J., "Application of Matchstick Geometry to Stress Dependent Permeability in Coal", SPE Rocky Mountain Regional Meeting, Casper, Wyoming, USA, (1992)
  11. Shi, J. Q. and Durucan, S., "Exponential Growth in San Juan Basin Fruitland Coalbed Permeability with Reservoir Drawdown: Model Match and New Insight", SPE Rocky Mountain Petroleum Technology Conference, Denver, Colorado, USA, (2009)
  12. Chen, D., Pan, Z. and Ye, Z., 2015, "Dependence of Gas Shale Fracture on Effectives Stress and Reservoir Pressure: Model Match and Insights", The Science and Technology of Fuel and Energy, 139, 383-392, (2009)
  13. Chen, D., Ye, Z., Pan, Z., Zhou, Y. and Zhang, J., "A Permeability Model for the Hydraulic Fracture Filled with Proppant Packs under Combined Effect of Compaction and Embedment", Journal of Petroleum Science and Engineering, 149, 428-435, (2017)
  14. Rutqvist, J., Wu, Y. S., Tsang, C. F., and Bodvarsson, G., "A Modeling Approach for Analysis Multiphase Fluid Flow, Heat Transfer, and Deformation in Fractured Porous Rock", International Journal of Rock Mechanics and Mining Sciences, 39, 429-442, (2002)
  15. Raghavan, R., and Chin, L. Y., "Productivity Changes in Reservoirs with Stress-Dependent Permeability", SPE Annual Technical Conference and Exhibition, San Antonio, Texas, USA, (2004)
  16. Min, K., Rutqvist, J., Tsang, C., and Lanru, J., "Stress-Dependent Permeability of Fractured Rock Masses: a Numerical Study", International Journal of Rock Mechanics and Mining Sciences, 41, 1191-1210, (2004)
  17. Celis, V., Guerra, J., and Da Prat, G., "A New Model for Pressure Transient Analysis in Stress Sensitive Naturally Fractured Reservoirs", SPE Advanced Technology Series, 2(1), 126-135, (1994)
  18. Yilmaz, O., and Nur, A., Pore Pressure Fronts in Fractured Rock System, Department of Geophysics, Stanford University, (1985)
  19. Settari, A. T., Bachman, R. C. and Walter, D. A., "How To Approximate Effects of Geomechanics in Conventional Reservoir Simulation", SPE Annual Technical Conference and Exhibition, Dallas, Texas, USA, (2005)
  20. Lee, T., Park, D., Shin, C., Jeong, D. and Choe, J., "Efficient Production Estimation for a Hydraulic Fractured Well Considering Fracture Closure and Proppant Placement Effects", Energy Exploration Exploitation, 34(4), 643-658, (2016)