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GENERALIZED CONTINUED FRACTION ALGORITHM

FOR THE INDEX 3 SUBLATTICE

Dong Han Kim

Abstract. Motivated by an algorithm to generate all Pythagorean triples, Romik
introduced a dynamical system on the unit circle, which corresponds the continued
fraction algorithm on the index-2 sublattice. Cha et al. extended Romik’s work to
other ellipses and spheres and developed a dynamical system generating all Eisen-
stein triples. In this article, we review the dynamical systems by Romik and by Cha
et al. and find connections to the continued fraction algorithms.

1. Introduction

We have continued fraction expansion of a real number as

[a1, a2, a3, . . . ] :=
1

a1 +
1

a2 +
.. .

, ai ∈ N for i ≥ 1.

The continued fraction can be studied using dynamical systems of the Gauss map

or the Farey map (cf. [5]). The Farey map TF : [0, 1] → [0, 1] is given by

TF ([a1, a2, . . . ]) :=

{

[a1 − 1, a2, . . . ] if a1 ≥ 2,

[a2, a3, . . . ] if a1 = 1

and the continued fraction expansion is obtained by the acceleration of the symbolic

coding of the Farey map. We extend the relation between the Farey map and the

continued fraction to more general cases. Let

S := {(x, y) ∈ R2 | x2 + y2 = 1 and x, y ≥ 0}

be the unit circle in the first quadrant. A rational point z = (a
c
, b
c
) ∈ S is denoted

by a primitive Pythagorean triple (a, b, c), satisfying a2 + b2 = c2, where a, b, c
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are nonnegative integers. The Berggren tree [1] gives an algorithm to generate all

primitive Pythagorean triples and Romik [11] defined a dynamical system on the

quarter circle S by the algorithm of the Berggren tree. Let

[a1, ε1 :a2, ε2 :a3, . . . ]2 :=
1

2a1 +
ε1

2a2 +
ε2

2a3 +
.. .

,

where ai ∈ N and ǫi ∈ {−1, 1} for i ≥ 1, be the even continued fraction expansion (cf.

[14]). By the stereographic projection, Romik’s dynamical system TR : [0, 1] → [0, 1]

on the unit interval to itself satisfies

(1) TR([a1, ε1 :a2, ε2 :a3, . . . ]2) =

{

[a1 − 1, ε1 :a2, ε2 :a3, . . . ]2 if a1 ≥ 2,

[a2, ε2 :a3, ε3 :a4, . . . ]2 if a1 = 1.

Therefore, the even continued fraction is an acceleration of the symbolic coding of

the Romik map TR. For the detailed relation between the Romik map TR and the

even continued fraction map, consult [6].

We denote the index-p sublattice of Z2 and the set of corresponding rational

numbers by

Λ
(p)
1 := {(n,m) ∈ Z2 |n = m (mod p)}, Q

(p)
1 :=

{ n

m
∈ Q | (n,m) ∈ Λ

(p)
1

}

.

Then the Romik map TR preserves Q
(2)
1 or the index-2 sublattice Λ

(2)
1 . Indeed, all

convergents of the even continued fraction expansion are in Q \ Q
(2)
1 . See [16] for

more discussions on the convergents of the even continued fraction and [9] for the

geometric meaning of the even continued fraction. It is related with the spectrum

on 2-minimal form by the sublattice of index 2 was studied by Asmus Schmidt [12]

(see [13] for p = 3) and by Vulakh (see [10]). See also [8,3,7] for the discussion with

the 2-minimal form and the continued fraction on the circle.

Let

E := {(x, y) ∈ R2 | x2 + xy + y2 = 1 and x, y ≥ 0}

be the ellipse on the first quadrant. In a similar way with the Berggren tree, Cha

et al [4] introduced an algorithm to generate all primitive Eisenstein triples (a, b, c)

satisfying a2 + ab + b2 = c2 and using it and the stereographic projection map

fE : E → [0, 1], they defined a dynamical system TC : [0, 1] → [0, 1].

In this article, we consider the Cha map TC and the related continued fraction

algorithm. While the Romik map TR preserves Q
(2)
1 , the Cha map TC preserves Q

(3)
1
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or the index-3 sublattice Λ
(3)
1 . We will find the invariant density of TC (Theorem

3.3). Using symbolic coding of the map TC , we introduce a new continued fraction

algorithm fixing the the index-3 sublattice Λ
(3)
1 . Then we will show that all principal

convergents pn/qn belongs to Q \ Q
(3)
1 (Theorem 3.4). In Section 2, we review the

Farey map, the Romik map and the even continued fraction algorithm. Then the

main results are given in Section 3. Finally, geometric interpretation of the new

continued fraction is given in Section 4.

2. Farey Map, Romik Map and the Sublattice of Index 2

Let M =

(
a b
c d

)

∈ PGL2(Z). Then M acts on the upper half plane hyperbolic

surface H = {x+ yi ∈ C | y > 0} as well as its boundary ∂H = R ∪ {∞} as

M · z =







az + b

cz + d
if det(M) = 1,

az̄ + b

cz̄ + d
if det(M) = −1.

We write the continued fraction expansion with matrices as

[a1, a2, . . . ] =

(
0 1
1 a1

)(
0 1
1 a2

)

· · ·

(
0 1
1 an

)

· [an+1, an+2, . . . ]

=

a1−1
︷ ︸︸ ︷

L1 · · ·L1 L2

a2−1
︷ ︸︸ ︷

L1 · · ·L1 L2 · · ·

an−1
︷ ︸︸ ︷

L1 · · ·L1 L2 · [an+1, an+2, . . . ],(2)

where

L1 :=

(
1 0
1 1

)

, L2 :=

(
0 1
1 1

)

.

The Farey map, introduced to find intermediate convergents by S. Ito [5] is defined

by

TF (t) =







t

1− t
= (L1)

−1 · t if 0 ≤ t ≤ 1
2 ,

1− t

t
= (L2)

−1 · t if 1
2 < t ≤ 1.

See [15] for the geometric meaning of the Farey map.

For each t ∈ [0, 1], we have the symbolic coding of the Farey map by the sequence

(dFj )
∞
j=1 given by

dFj (t) :=

{
1 if T j−1

F (t) ∈ [0, 12 ],

2 if T j−1
F (t) ∈ (12 , 1],
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where T j−1
F (t) = (

j−1
︷ ︸︸ ︷

TF ◦ · · · ◦ TF )(t). We write

JdF1 , d
F
2 , d

F
3 , . . .KF := t.

Note that for all k ≥ 1

Jd1, d2, . . .KF = Ld1Ld2 · · ·Ldk · Jdk+1, dk+2, . . .KF .

Using (2), we deduce that for each Jd1, d2, . . .KF = [a1, a2, . . . , ], we have

dk =

{

1 if a1 + · · · + an−1 < k < a1 + · · ·+ an for some n,

2 if k = a1 + · · ·+ an for some n.

For k = a1 + · · ·+ an + ℓ with 0 ≤ ℓ ≤ an+1 − 1, we have

Ld1 · · ·Ldk · 0 =

a1−1
︷ ︸︸ ︷

L1 · · ·L1 L2

a2−1
︷ ︸︸ ︷

L1 · · ·L1 L2 · · ·

an−1
︷ ︸︸ ︷

L1 · · ·L1 L2L
ℓ
1 · 0

=

(
pn−1 pn
qn−1 qn

)

Lℓ
1 · 0 =

(
pn−1 pn
qn−1 qn

)

· 0 =
pn
qn

,

where pn/qn is the n-th convergent of the continued fraction expansion. Therefore,

the set of convergents of the continued fraction of t = Jd1, d2, . . .KF is equal to

{Ld1Ld2 · · ·Ldk · 0 | k ≥ 0} .

Now we consider continued fraction algorithms on the circle S, where the rational

points are given by primitive Pythagorean triples. Berggren [1] developed a method

to generated all primitive Pythagorean triple; if (a, b, c) is a primitive Pythagorean

triple, there exists a unique sequence d1, . . . , dk of digits dj ∈ {1, 2, 3} such that




a
b
c



 = M̃d1 · · · M̃dk





1
0
1



 or





a
b
c



 = M̃d1 · · · M̃dk





0
1
1





where M̃1, M̃2, M̃3 are defined to be

M̃1 :=





−1 2 2
−2 1 2
−2 2 3



 , M̃2 :=





1 2 2
2 1 2
2 2 3



 , M̃3 :=





1 −2 2
2 −1 2
2 −2 3



 .

Note that the multiplications by M̃i, i = 1, 2, 3, do not change the parity, thus a

primitive Pythagorean triple (a, b, c) satisfies either

(a, b, c) ≡ (1, 0, 1) (mod 2) or (a, b, c) ≡ (0, 1, 1) (mod 2).
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Romik [11] defined a dynamical system TR on the quarter circle S by the action

of the inverse of matrices M̃1, M̃2, M̃3. By the stereographic projection map fS :

S → [0, 1] such that

fS(x, y) =
y

1 + x
, f−1

S (t) =

(
1− t2

1 + t2
,

2t

1 + t2

)

,

the matrices actions of M̃1, M̃2, M̃3 become to actions of

M1 :=

(
1 0
2 1

)

, M2 :=

(
0 1
1 2

)

. M3 :=

(
0 1
−1 2

)

.

Therefore, Romik’s dynamical system TR : [0, 1] → [0, 1] is given by

TR(t) :=







M−1
1 · t =

t

1− 2t
if 0 ≤ t ≤ 1

3 ,

M−1
2 · t =

1− 2t

t
if 1

3 < t < 1
2 ,

M−1
3 · t =

2t− 1

t
if 1

2 ≤ t ≤ 1.

As before, for each t ∈ [0, 1], we define the symbolic coding of the Romik map

JdR1 , d
R
2 , d

R
3 , . . .KR := t

by the sequence (dRj )
∞
j=1 of

dRj (t) :=







1 if T j−1
R (t) ∈ [0, 13 ],

2 if T j−1
R (t) ∈ (13 ,

1
2 ),

3 if T j−1
R (t) ∈ [12 , 1].

Let p/q ∈ Q ∩ [0, 1] be a reduced form and (a, b, c) be the primitive Pythagorean

triple satisfying

f−1
S

(
p

q

)

=

(
q2 − p2

q2 + p2
,

2pq

q2 + p2

)

=

(
a

c
,
b

c

)

.

Then

(a, b, c) =







(q2 − p2, 2pq, q2 + p2) ≡ (1, 0, 1) (mod 2) if p/q ∈ Q \Q
(2)
1 ,

(
q2 − p2

2
,
2pq

2
,
q2 + p2

2

)

≡ (0, 1, 1) (mod 2) if p/q ∈ Q
(2)
1 .

Therefore, for a primitive Pythagorean triple (a, b, c) we have

fS

(
a

c
,
b

c

)

=
b

a+ c
∈

{

Q
(2)
1 if (a, b, c) ≡ (0, 1, 1) (mod 2),

Q \Q
(2)
1 if (a, b, c) ≡ (1, 0, 1) (mod 2)
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Using even continued fraction expansion, we have

[a1, ε1 :a2, ε2 :a3, . . . ]2 =

(
0 1
ǫ1 2a1

)

· [a2, ε2 :a3, . . . ]2

=

{

Ma1−1
1 M2 · [a2, ε2 :a3, . . . ]2, if ε1 = 1,

Ma1−1
1 M3 · [a2, ε2 :a3, . . . ]2, if ε1 = −1.

Therefore, we deduce (1) and if [a1, ε1 :a2, ε2 :a3, . . . ]2 = Jd1, d2, . . .KR, then

dk =







1 if a1 + · · ·+ an−1 < k < a1 + · · ·+ an for some n,

2 if k = a1 + · · ·+ an for some n and εn = 1,

3 if k = a1 + · · ·+ an for some n and εn = −1.

For k = a1 + · · ·+ an + ℓ with 0 ≤ ℓ ≤ an+1 − 1, we have

Md1 · · ·Mdk · 0 =

a1−1
︷ ︸︸ ︷

M1 · · ·M1Md(ǫ1)

a2−1
︷ ︸︸ ︷

M1 · · ·M1 Md(ǫ2) · · ·

an−1
︷ ︸︸ ︷

M1 · · ·M1 Md(ǫn)M
ℓ
1 · 0

=

(
εnpn−1 pn
εnqn−1 qn

)

Lℓ
1 · 0 =

(
εnpn−1 pn
εnqn−1 qn

)

· 0 =
pn
qn

,

where d(1) = 2, d(−1) = 3 and pn/qn is the n-th convergent of the even continued

fraction expansion. It is straightforward to check that

Mi

(

Λ
(2)
1

)

= Λ
(2)
1 and M−1

i

(

Λ
(2)
1

)

= Λ
(2)
1 for i = 1, 2, 3.

Therefore, the Romik map TR preserves two sets of the rational numbers

TR

(

Q
(2)
1

)

= Q
(2)
1 , TR

(

Q \Q
(2)
1

)

= Q \Q
(2)
1 .

Note that for t = Jd1, d2, . . .KR the set of convergents pn/qn of the even continued

fraction is equal to

{Md1 · · ·Mdk · 0 | k ≥ 0} ⊂ Q \Q
(2)
1 .

3. Main Results

Set

N1 :=

(
1 0
3 1

)

, N2 :=

(
0 1
1 3

)

, N3 :=

(
1 1
2 3

)

, N4 :=

(
1 1
3 2

)

, N5 :=

(
0 1
−1 2

)

.

Using the stereographic projection map fE : E → [0, 1] satisfying

fE(x, y) =
y

1 + x
, f−1

E (t) =

(
1− t2

1 + t+ t2
,

t(2 + t)

1 + t+ t2

)
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(−1, 0)

(1, 0)

(0, 1)

(0,−1)

(−1, 1)

(1,−1)

t

fE(t)

Figure 1. The ellipse E and the projection map fE

(see Figure 1), Cha et al [4] defined the Cha map TC : [0, 1] → [0, 1] by

(3) TC(t) :=







N−1
1 · t =

t

1− 3t
if 0 ≤ t ≤ 1

4 ,

N−1
2 · t =

1− 3t

t
if 1

4 ≤ t ≤ 1
3 ,

N−1
3 · t =

3t− 1

1− 2t
if 1

3 ≤ t ≤ 2
5 ,

N−1
4 · t =

1− 2t

3t− 1
if 2

5 ≤ t ≤ 1
2 ,

N−1
5 · t =

2t− 1

t
if 1

2 ≤ t ≤ 1

(see also [2]). Like the Romik map TR which preserves modulo 2 parities, the Cha

map TC preserves the modulo 3 parities.

Proposition 3.1. We have

TC

(

Q
(3)
1

)

= Q
(3)
1 , TC

(

Q \Q
(3)
1

)

= Q \Q
(3)
1 .

Proof. Since

n ≡ m (mod 3) if and only if n ≡ 3n+m (mod 3),

n ≡ m (mod 3) if and only if m ≡ n+ 3m (mod 3),

n ≡ m (mod 3) if and only if n+m ≡ 2n+ 3m (mod 3),

n ≡ m (mod 3) if and only if n+m ≡ 3n+ 2m (mod 3),

n ≡ m (mod 3) if and only if m ≡ −n+ 2m (mod 3),
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we have

N−1
i ·Q

(3)
1 = Ni ·Q

(3)
1 = Q

(3)
1 for all i = 1, 2, 3, 4, 5. �

Similar to the Pythagorean triple, there are two classes of the Eisenstein triples.

Proposition 3.2. Let (a, b, c) be a primitive Eisenstein triple. Then we have

fE

(
a

c
,
b

c

)

=
b

a+ c
∈

{

Q
(3)
1 , if a+ 1 ≡ b (mod 3),

Q \Q
(3)
1 , if a ≡ b+ 1 (mod 3).

Proof. Let p/q ∈ Q ∩ [0, 1] be a reduced form. Then

f−1
E

(
p

q

)

=

(
q2 − p2

q2 + qp+ p2
,

p(2q + p)

q2 + qp+ p2

)

.

Suppose that r is a common prime factor of q2 − p2, p(2q + p), q2 + qp+ p2. Then

we have that r | (q − p)(q + p) and that r | p(2q + p). Since p and q are coprime, we

have r ∤ p, r | (q − p) and r | (2q + p). Thus, we have r | 3q and r = 3. Moreover, if

3 is the common factor of q2 − p2, p(2q + p), q2 + qp+ p2, then we have

q ≡ p 6≡ 0 (mod 3).

Also, it is immediate to check that 3 is a common factor of q2 − p2, p(2q + p),

q2 + qp+ p2 if p ≡ q (mod 3).

Let p/q ∈ Q∩ [0, 1] be a reduced form and (a, b, c) be the primitive Einstein triple

satisfying

f−1
E

(
p

q

)

=

(
a

c
,
b

c

)

.

Then we deduced that

(a, b, c) =







(q2 − p2, p(2q + p), q2 + qp+ p2) if p/q ∈ Q \Q
(3)
1 ,

(
q2 − p2

3
,
p(2q + p)

3
,
q2 + qp+ p2

3

)

if p/q ∈ Q
(3)
1 .

Moreover, for p/q ∈ Q \Q
(3)
1 , we have

(4) (a, b, c) ≡







(1, 0, 1) (mod 3) if p ≡ 0 (mod 3),

(−1, 1, 1) (mod 3) if q ≡ 0 (mod 3),

(0,−1, 1) (mod 3) if p+ q ≡ 0 (mod 3).

On the other hand, for coprime p, q with p ≡ q 6≡ 0 (mod 3), we have

a+ 1 = (q + p)
(q − p)

3
+ 1 ≡ 2p

(q − p)

3
+ p2 ≡ p

2q + p

3
= b (mod 3).
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Therefore, for p/q ∈ Q
(3)
1 we have

(5) (a, b, c) ≡ (0, 1, 1) or (−1, 0, 1) or (1,−1, 1) (mod 3).

By (4) and (5), we complete the proof. �

Theorem 3.3. The Cha map TC on [0, 1] has invariant density
dt

t(1− t)
.

Proof. We need to check that for each t ∈ (0, 1)

ρ(t) =
∑

x∈T−1({t})

ρ(x)

|T ′(x)|

for the invariant density ρ(t) = 1
t(1−t) . Given t ∈ (0, 1), we have five inverse images

of TC

x1 =
t

3t+ 1
, x2 =

1

t+ 3
, x3 =

t+ 1

2t+ 3
, x4 =

t+ 1

3t+ 2
, x5 =

1

2− t
.

Then we have
∑

x∈T−1

C
({t})

ρ(x)

|T ′(x)|

=
ρ(x1)

|T ′(x1)|
+

ρ(x2)

|T ′(x2)|
+

ρ(x3)

|T ′(x3)|
+

ρ(x4)

|T ′(x4)|
+

ρ(x5)

|T ′(x5)|

=
(1− 3x1)

2

x1(1− x1)
+

(x2)
2

x2(1− x2)
+

(1− 2x3)
2

x3(1− x3)
+

(3x4 − 1)2

x4(1− x4)
+

(x5)
2

x5(1− x5)

=
(1− 3t

3t+1 )
2

t
3t+1 (1−

t
3t+1)

+
1

t+3

1− 1
t+3

+
(1− 2 t+1

2t+3 )
2

t+1
2t+3 (1−

t+1
2t+3 )

+
(3 t+1

3t+2 − 1)2

t+1
3t+2 (1−

t+1
3t+2 )

+
1

2−t

1− 1
2−t

=
1

t(1 + 2t)
+

1

t+ 2
+

1

(t+ 1)(t+ 2)
+

1

(t+ 1)(2t + 1)
+

1

1− t
=

1

t(1− t)
= ρ(t),

which complete the proof. �

For each t ∈ [0, 1], we define the symbolic coding of the Cha map TC by

JdC1 , d
C
2 , d

C
3 , . . .KC := t,

where

dCj (t) :=







1 if T j−1
R (t) ∈ [0, 14 ],

2 if T j−1
R (t) ∈ (14 ,

1
3 ],

3 if T j−1
R (t) ∈ (13 ,

2
5),

4 if T j−1
R (t) ∈ [25 ,

1
2),

5 if T j−1
R (t) ∈ [12 , 1].
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Then for each k ≥ 1

Jd1, d2, d3, . . .KC = Nd1Nd2 · · ·Ndk · Jdk+1, dk+2, . . .KC .

Let

α(d) :=

{

0 if d = 2 or 3,

1 if d = 4 or 5,
β(d) :=

{

0 if d = 2 or 5,

1 if d = 3 or 4.

Then for d = 2, 3, 4, 5

Na−1
1 Nd =

(
0 1

(−1)d 3a− α(d)

)(
1 0

β(d) 1

)

.

For ai ∈ N and αi, βi ∈ {0, 1} for i ≥ 1, define

[a1, (α1, β1) :a2, (α2, β2) . . . ]3 :=
1

3a1 − α1 +
(−1)α1+β1

β1 + 3a2 − α2 +
(−1)α2+β2

β2 + 3a3 − α3 +
.. .

.

Then

[a1, (α1, β1) :a2, (α2, β2) . . . ]3 =

a1−1
︷ ︸︸ ︷

N1 · · ·N1 Nd(α1,β1) · [a2, (α2, β2) :a3, (α3, β3) . . . ]3,

where

d(α, β) :=







2 if α = 0, β = 0,

3 if α = 0, β = 1,

4 if α = 1, β = 1,

5 if α = 1, β = 0.

Therefore, if [a1, (α1, β1) :a2, (α2, β2) . . . ]3 = Jd1, d2, . . .KC , then

dk =

{

1 if a1 + · · ·+ an−1 < k < a1 + · · · + an for some n,

d(αn, βn) if k = a1 + · · ·+ an for some n.

For k = a1 + · · ·+ an + ℓ with 0 ≤ ℓ ≤ an+1 − 1, we have

Nd1 · · ·Ndk · 0 =

a1−1
︷ ︸︸ ︷

N1 · · ·N1 Nd(α1,β1) · · ·

an−1
︷ ︸︸ ︷

N1 · · ·N1 Nd(αn,βn)N
ℓ
1 · 0
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=

a1−1
︷ ︸︸ ︷

N1 · · ·N1Nd(α1,β1) · · ·

an−1−1
︷ ︸︸ ︷

N1 · · ·N1Nd(αn−1,βn−1) ·
1

3an + βn−1 − αn

=
1

3a1 − α1 +
(−1)α1+β1

β1 + 3a2 − α2 +
(−1)α2+β2

. . . +
(−1)αn−1+βn−1

βn−1 + 3an − αn

.

Therefore, Nd1 · · ·Ndk · 0 is the n-th convergent of the continued fraction expansion

of Ja1, (α1, β1) : a2, (α2, β2), a3, . . .K3. Combined with Proposition 3.1, we have the

following theorem.

Theorem 3.4. All convergents pn/qn belongs to Q \Q
(3)
1 .

4. Matrix Action on the Hyperbolic Space

Let M =

(
a b
c d

)

∈ PGL2(Z). Then M acts on the upper half plane hyperbolic

surface H = {x+ yi ∈ C | y > 0} as well as its boundary ∂H = R ∪ {∞} by

M · z =







az + b

cz + d
, if det(M) = 1,

az̄ + b

cz̄ + d
, if det(M) = −1.

The fundamental domain of PGL2(Z) is given in Figure 2. Note that the fundamental

domain of PGL2(Z) is the half of the fundamental domain of PSL2(Z).

There is an natural homomorphism

ϕ : PGL2(Z) → PGL2(Z/3Z).

Let

G(3) =

{

M ∈ PGL2(Z)
∣
∣
∣ ϕ(M) =

(
1 0
0 1

)}

.

Then G(3) is a index 24-subgroup of PGL2(Z) since there are 24 elements of

PGL2(Z/3Z). See Figure 2 for the fundamental domain of G(3). Let

S1(3) =

{(
1 0
0 1

)

,

(
0 1
1 0

)

,

(
0 −1
1 1

)

,

(
−1 0
1 1

)

,

(
1 1
−1 0

)

,

(
1 1
0 −1

)}

,

be a subgroup of PGL2(Z/3Z). Let

G1(3) = {M ∈ PGL2(Z) | ϕ(M) ∈ S1(3)} .
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Figure 2. Fundamental domains of PGL2(Z) (red), G1(3) (blue) and
G(3) (black)

Then G1(3) is an index-4 subgroup of PGL2(Z) fixing Q
(3)
1 or the index-3 sublattice

Λ
(3)
1 . See Figure 2 for the fundamental domain of G1(3), which is 4 copies of the

fundamental domain of PGL2(Z). There are two cusps in the fundamental domain

of G1(3). The cusp ∞ corresponds to Q \Q
(3)
1 and the cusp 1 corresponds to Q

(3)
1 .

Since N1, . . . , N5 ∈ G1(3), the expansion along the Cha map gives Diophantine

approximation on G1(3). For t = Jd1, d2, d3, . . .KC , we have two convergents

rk := Nd1Nd2 · · ·Ndk · 0 and sk := Nd1Nd2 · · ·Ndk · 1.

We check that

rk ∈ Q \Q
(3)
1 , sk ∈ Q

(3)
1 and t = lim

k→∞
rk = lim

k→∞
sk.
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