과제정보
This work was supported by Innovative Human Resource Development for Local Intellectualization program through the Institute of Information & Communications Technology Planning & Evaluation(IITP) grant funded by the Korea government(MSIT)(IITP-2024-RS-2023-00260267)
참고문헌
- Campaigns surveys https://campaigns.do/surveys/329
- Yoo Kwang Hyun, Vo-Hoang Trong, Kim Jin Young, "Deep Learning Research Trends For Weed Identification", Journal of The Korean Institute of Communication Sciences, No.8, 2021.
- S. Suh, "Improved Motion Recognition Based On Convolution Neural Network For High Accuracy", journal of Knowledge Information Technology and Systems(JKITS), No. 3, 2021.
- S. Suh, "Human Activity Recognition Systems Based On Maximum Color Difference And Deep Learning", Journal of Knowledge Information Technology and Systems(JKITS), No.4, 2021.
- Gwanghyun Yu, Jaewon Lee, Vo Hoang Trong, Dang Thanh Vu, Huy Toan Nguyen, HooHwan Lee, Dosung Shin, Jinyoung Kim, "Alien Weed Classification: A Hierarchical Structure Based On Convolutional Neural Networks", Journal of Korean Institute of Information Technology, No. 12, Dec, 2019.
- Harshita Shri Panati, Gopika P, Diana Andrushia A and Mary Neebha T, "Weeds And Crop Image Classificationo Using Deep Learning Technique", International Conference on Advanced Compution and Communication Systems(ICACCS), pp 117-122, DOI:10.1109/ICACCS57279.2023.1011958.
- Y. Dandekar, K. Shinde, J. Gangan, S. Firdausi and S. Bharne, "Weed Plant Detection From Agricultural Filed Images Using YOLOv3 Algorithm", International Conference On Computing, Communication, Control And Automation(ICCUBEA), pp 1-4, DOI: 10.1109/ICCUBEA54992.2022.10011010.
- Liu, W. et al. "SSD: Single Shot MultiBox Detector", ECCV Lecture notes in Computer Science, vol 99095. DOI: Https://doi.org/10.1007/978-3-319-46448-0_2.
- J. Redmon, S.Divvala, R. Girshick and A. Farhadi, "YOU Only Look Once: Unified, Real-Time Object Detection", IEEE Conference on Computer Vision and Pattern Recognition(CVPR), pp. 779-788, DOI: 10.1109/CVPR.2016.91.
- S. Tariyal, R. Chauhan, Y. Bijalwan, R. Rawat and R. Gupta, "A comparitive study of MTCNN, Viola-Jones, SSD and YOLO face detection algorithms," International Conference on Intelligent and Innovative Technologies in Computing, Electrical and Electronics (IITCEE), pp. 1-7, doi: 10.1109/IITCEE59897.2024.10467445.
- YOLOv10 object detection Better, Faster and Smaller, visionplatform, https://visionplatform.ai
- YOLOv10-docs https://docs.ultralytics.com/ko/models/yolov10/
- Dataset, https://www.aihub.or.kr/aihubdata/data/view.do?currMenu=115&topMenu=100&aihubDataSe=data&dataSetSn=527