Acknowledgement
This work was conducted during the sabbatical year.
References
- R. H. Shumway, D. S. Stoffer, R. H. Shumway, and D. S. Stoffer, "ARIMA models," Time series analysis and its applications: with R examples, pp. 75-163. 2017. DOI:10.1007/978-3-319-52452-8_3
- Y. Yu, X. Si, C. Hu, and J. Zhang, J., "A review of recurrent neural networks: LSTM cells and network architectures," Neural computation, Vol. 31, No. 7, pp. 1235-1270, 2019. DOI:10.1162/neco_a_01199
- Y. Fang, H. Xu, and J. Jiang, "A survey of time series data visualization research", In IOP Conference Series: Materials Science and Engineering, Vol. 782, No. 2, pp. 022013. IOP Publishing. 2020. DOI:10.1088/1757-899x/782/2/022013
- J.F. Torres, D. Hadjout, A. Sebaa, F. Martinez-Alvarez, and A. Troncoso, "Deep learning for time series forecasting: a survey," Big Data, Vol. 9. No. 1, pp. 3-21, 2021. DOI:10.1089/big.2020.0159
- Z. Mushtaq and S. Shun-Feng, "Efficient classification of environmental sounds through multiple features aggregation and data enhancement techniques for spectrogram images," Symmetry Vol. 12, No. 11, pp. 1821, 2020. DOI:10.3390/sym12111822
- M. T. Nguyen, W. L. Wei and H. H. Jin, "Heart sound classification using deep learning techniques based on log-mel spectrogram," Circuits, Systems, and Signal Processing Vol. 42, No. 1, pp. 344-360, 2023. DOI:10.1007/s00034-022-02124-1
- S. Barra, S.M. Carta, A. Corriga, A.S. Podda, and D.R. Recupero, "Deep learning and time series-to-image encoding for financial forecasting," IEEE/CAA Journal of Automatica Sinica, Vol. 7, No. 3, pp. 683-692, 2020. DOI:10.1109/JAS.2020.1003132
- K. Choi, J. Yi, C. Park, and S. Yoon, "Deep learning for anomaly detection in time-series data: Review, analysis, and guidelines," IEEE access, Vol. 9, pp. 120043-120065, 2021. DOI:10.1109/ACCESS.2021.3107975
- P. Arcaini, A. Bombarda, S. Bonfanti, and A. Gargantini, "Dealing with robustness of convolutional neural networks for image classification," In 2020 IEEE International Conference On Artificial Intelligence Testing (AITest), pp. 7-14. IEEE, 2020. DOI:10.1109/AITEST49225.2020.00009
- J. Djolonga, J. Yung, M. Tschannen, R. Romijnders, L. Beyer, A. Kolesnikov, J. Puigcerver, M. Minderer, A. D'Amour, D. Moldovan, and S. Gelly, "On robustness and transferability of convolutional neural networks," In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16458-16468. 2021. DOI:10.1109/cvpr46437.2021.01619
- P. Jiang, D. Ergu, F. Liu, Y. Cai, and B. Ma, "A Review of Yolo algorithm developments," Procedia computer science Vol. 199, pp. 1066-1073, 2022. DOI:10.1016/j.procs.2022.01.135
- A. Casolaro, V. Capone, G. Iannuzzo, and F. Camastra, "Deep learning for time series forecasting: Advances and open problems," Information Vol. 14, No. 11 pp. 598. 2023. DOI: 10.3390/info14110598
- C. Li, J. Xiong, X. Zhu, Q. Zhang, and S. Wang, "Fault diagnosis method based on encoding time series and convolutional neural network," IEEE Access, Vol. 8, pp. 165232-165246, 2020. DOI:10.1109/ACCESS.2020.3021007
- X. Sun, P. Liu, Z. He, Y. Han, and B. Su, "Automatic classification of electrocardiogram signals based on transfer learning and continuous wavelet transform," Ecological Informatics, Vol. 69, p. 101628, 2022. DOI:10.1016/j.ecoinf.2022.101628
- A. Bhowmik, A., M. Sannigrahi, D. Chowdhury, A.D. Dwivedi, and R.R. Mukkamala, "Dbnex: Deep belief network and explainable ai based financial fraud detection," In 2022 IEEE International Conference on Big Data (Big Data), IEEE, pp. 3033-3042, 2022. DOI:10.1109/BigData55660.2022.10020494
- N. Hatami, Y. Gavet, and J. Debayle, "Classification of time-series images using deep convolutional neural networks," In Tenth international conference on machine vision (ICMV 2017), Vol. 10696, pp. 242-249. SPIE. 2018. DOI:10.1117/12.2309486
- D. Braun, R. Borgo, M. Sondag, and T. von Landesberger, "Reclaiming the horizon: Novel visualization designs for time-series data with large value ranges," IEEE Transactions on Visualization and Computer Graphics, 2023. DOI:10.1109/TVCG.2023.3326576
- W. Xie, Y. Li, J. Lei, J. Yang, J. Li, X. Jia, and Z. Li, " Unsupervised spectral mapping and feature selection for hyperspectral anomaly detection," Neural Networks, Vol. 132, pp. 144-154. 2020. DOI:10.1016/j.neunet.2020.08.010
- Z. Qin, Y. Zhang, S. Meng, Z. Qin, and K.K.R. Choo, "Imaging and fusing time series for wearable sensor-based human activity recognition," Information Fusion, Vol. 53, pp. 80-87. 2020. =DOI:10.1016/j.inffus.2019.06.014
- G. Uribarri and G.B. Mindlin, "Dynamical time series embeddings in recurrent neural networks," Chaos, Solitons & Fractals, Vol. 154, p. 111612, 2022. DOI:10.1016/j.chaos.2021.111612
- H. V. Dudukcu, M. Taskiran, Z. G. C. Taskiran, and T. Yildirim, "Temporal Convolutional Networks with RNN approach for chaotic time series prediction," Applied soft computing, Vol. 133, p. 109945. 2023 DOI:10.1016/j.asoc.2022.109945
- K. J. Piczak, "ESC: Dataset for environmental sound classification," In Proceedings of the 23rd ACM international conference on Multimedia, pp. 1015-1018. 2015. DOI:10.1145/2733373.2806390