DOI QR코드

DOI QR Code

Integrating predictive modeling and causal inference for advancing medical science

  • Tae Ryom Oh (Department of Internal Medicine, Mokpo Hankook Hospital)
  • Received : 2024.10.01
  • Accepted : 2024.10.24
  • Published : 2024.10.31

Abstract

Artificial intelligence (AI) is revolutionizing healthcare by providing tools for disease prediction, diagnosis, and patient management. This review focuses on two key AI methodologies in healthcare: predictive modeling and causal inference. Predictive models excel in identifying patterns to forecast outcomes but are limited in explaining the underlying causes. In contrast, causal inference focuses on understanding cause-and-effect relationships, which makes effective medical interventions possible. Although randomized controlled trials (RCTs) are the gold standard for causal inference, they face limitations including cost and ethical concerns. As alternatives, emulated RCTs and advanced machine learning techniques have emerged for estimating causal effects, bridging the gap between prediction and causality. Additionally, Shapley values and Local Interpretable Model-Agnostic Explanations improve the interpretability of complex AI models, making them more actionable in clinical settings. Integrating prediction and causal inference holds great promise for advancing personalized medicine, enhancing patient outcomes, and optimizing healthcare delivery. However, careful application of AI tools is crucial to avoid misinterpretation and maximize their potential.

Keywords

References

  1. Alanazi R. Identification and prediction of chronic diseases using machine learning approach. J Healthc Eng 2022;2022:2826127.
  2. Kumar A, Satyanarayana Reddy SS, Mahommad GB, Khan B, Sharma R. Smart healthcare: disease prediction using the cuckoo-enabled deepclassifier inIoTframework.SciProgram2022;2022:2090681.
  3. Talukdar J, Singh TP. Early prediction of cardiovascular disease using artificial neural network. Paladyn J Behav Robot 2023;14:20220107.
  4. Tomasev N, Glorot X, Rae JW, Zielinski M, Askham H, Saraiva A, et al. A clinically applicable approach to continuous prediction of future acute kidney injury. Nature 2019;572:116-9.
  5. Kavitha C, Mani V, Srividhya SR, Khalaf OI, Tavera Romero CA. Early-stage Alzheimer's disease prediction using machine learning models. Front Public Health 2022;10:853294.
  6. Basu S, Sussman JB, Hayward RA. Detecting heterogeneous treatment effects to guide personalized blood pressure treatment: a modeling study of randomized clinical trials. Ann Intern Med 2017;166:354-60.
  7. Govindaraj M, Asha V, Saju B, Sagar M, Rahul. Machine learning algorithms for disease prediction analysis. In: 2023 5th International Conference on Smart Systems and Inventive Technology (ICSSIT). Tirunelveli, India; 2023. p. 879-88.
  8. Verma VK, Lin WY. A machine learning-based predictive model for 30-day hospital readmission prediction for COPD patients. In: 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC). Toronto, Canada; 2020. p. 994-9.
  9. Anurag, Vyas N, Sharma V, Balla D. Chronic kidney disease prediction using robust approach in machine learning. In: 2023 3rd International Conference on Innovative Sustainable Computational Technologies (CISCT). Dehradun, India; 2023. p. 1-5.
  10. Pearl J. Causal inference in statistics: an overview. Stat Surv 2009;3:96-146.
  11. Prosperi M, Guo Y, Sperrin M, Koopman JS, Min JS, He X, et al. Causal inference and counterfactual prediction in machine learning for actionable healthcare. Nat Mach Intell 2020;2:369-75.
  12. Shen X, Ma S, Vemuri P, Castro MR, Caraballo PJ, Simon GJ. A novel method for causal structure discovery from EHR data and its application to type-2 diabetes mellitus. Sci Rep 2021;11:21025.
  13. Sanchez P, Voisey JP, Xia T, Watson HI, O'Neil AQ, Tsaftaris SA. Causal machine learning for healthcare and precision medicine. R Soc Open Sci 2022;9:220638.
  14. Phillips DP, Liu GC, Kwok K, Jarvinen JR, Zhang W, Abramson IS. The Hound of the Baskervilles effect: natural experiment on the influence of psychological stress on timing of death. BMJ 2001;323:1443-6.
  15. Arif S, MacNeil MA. Predictive models aren't for causal inference. Ecol Lett 2022;25:1741-5.
  16. Breiman L. Random forests. Mach Learn 2001;45:5-32.
  17. Freund Y, Schapire RE. A decision-theoretic generalization of online learning and an application to boosting. J Comput Syst Sci 1997;55:119-39.
  18. Cortes C, Vapnik V. Support-vector networks. Mach Learn 1995; 20:273-97.
  19. LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proc IEEE 1998;86:2278-324.
  20. Oh TR, Song SH, Choi HS, Suh SH, Kim CS, Jung JY, et al. Predictive model for high coronary artery calcium score in young patients with non-dialysis chronic kidney disease. J Pers Med 2021;11:1372.
  21. Xu Y, Hosny A, Zeleznik R, Parmar C, Coroller T, Franco I, et al. Deep learning predicts lung cancer treatment response from serial medical imaging. Clin Cancer Res 2019;25:3266-75.
  22. Linardatos P, Papastefanopoulos V, Kotsiantis S. Explainable AI: a review of machine learning interpretability methods. Entropy (Basel) 2020;23:18.
  23. Carloni G, Berti A, Colantonio S. The role of causality in explainable artificial intelligence. arXiv [Preprint] 2023 Sep 18. https:// doi.org/10.48550/arXiv.2309.09901
  24. Ichimura H, Taber C. Propensity-score matching with instrumental variables. Am Econ Rev 2001;91:119-24.
  25. Heckman J, Navarro-Lozano S. Using matching, instrumental variables, and control functions to estimate economic choice models. Rev Econ Stat 2004;86:30-57.
  26. Hariton E, Locascio JJ. Randomised controlled trials: the gold standard for effectiveness research: Study design: randomised controlled trials. BJOG 2018;125:1716.
  27. Deaton A, Cartwright N. Understanding and misunderstanding randomized controlled trials. Soc Sci Med 2018;210:2-21.
  28. Rekkas A, Paulus JK, Raman G, Wong JB, Steyerberg EW, Rijnbeek PR, et al. Predictive approaches to heterogeneous treatment effects: a scoping review. BMC Med Res Methodol 2020;20:264.
  29. Messalas A, Kanellopoulos Y, Makris C. Model-agnostic interpretability with Shapley values. In: 2019 10th International Conference on Information, Intelligence, Systems and Applications (IISA). Patras, Greece; 2019. p. 1-7.
  30. Zafar MR, Khan NM. DLIME: a deterministic Local Interpretable Model-Agnostic Explanations approach for computer-aided diagnosis systems. arXiv [Preprint] 2019 Jun 24. https://doi.org/10.48550/arXiv.1906.10263
  31. Li X, Wu R, Zhao W, Shi R, Zhu Y, Wang Z, et al. Machine learning algorithm to predict mortality in critically ill patients with sepsis-associated acute kidney injury. Sci Rep 2023;13:5223.
  32. Raghavan S, Josey K, Bahn G, Reda D, Basu S, Berkowitz SA, et al. Generalizability of heterogeneous treatment effects based on causal forests applied to two randomized clinical trials of intensive glycemic control. Ann Epidemiol 2022;65:101-8.
  33. Pichler M, Hartig F. Can predictive models be used for causal inference? arXiv [Preprint] 2023 Jun 18. https://doi.org/10.48550/arXiv.2306.10551
  34. Kutcher SA, Brophy JM, Banack HR, Kaufman JS, Samuel M. Emulating a randomised controlled trial with observational data: an introduction to the target trial framework. Can J Cardiol 2021;37:1365-77.
  35. Gianicolo EA, Eichler M, Muensterer O, Strauch K, Blettner M. Methods for evaluating causality in observational studies. Dtsch Arztebl Int 2020;116:101-7.
  36. Rasouli B, Chubak J, Floyd JS, Psaty BM, Nguyen M, Walker RL, et al. Combining high quality data with rigorous methods: emulation of a target trial using electronic health records and a nested case-control design. BMJ 2023;383:e072346.
  37. Sengupta S, Ntambwe I, Tan K, Liang Q, Paulucci D, Castellanos E, et al. Emulating randomized controlled trials with hybrid control arms in oncology: a case study. Clin Pharmacol Ther 2023;113:867-77.