DOI QR코드

DOI QR Code

Preparation and Performance Analysis of Pd-Ag Alloy Hydrogen Membrane with GO/γ-Al2O3 Interlayers

그래핀 옥사이드와 감마 알루미나 중간층을 도입한 Pd-Ag 합금 수소 분리막 제조 및 성능 분석

  • Received : 2024.10.02
  • Accepted : 2024.10.24
  • Published : 2024.10.30

Abstract

In this experimental, a GO/γ-Al2O3 intermediate layer was coated onto an α-Al2O3 support using vacuum coating and dip-coating methods, and a Pd-Ag membrane was fabricated via electroless plating. Pd and Ag were sequentially coated onto the support through electroless plating, followed by heat treatment at 500℃ for 18 h in an H2 atmosphere to form the alloy. The surface and cross-secsion of the fabricated membrane was observed using SEM and the thickness of the Pd-Ag membrane was measured to be 1.88 ㎛, while the thickness of the GO/γ Pd-Ag membrane was 1.07 ㎛. EDS analyses confirmed the formation of a Pd-Ag alloy with a composition of Pd-77% and Ag-23%. Gas permeation experiments were conducted with pure H2 and H2/N2 mixed gases. The maximum H2 flux of the Pd membrane was 0.53 mol/m2·s at 450℃ and 4 bar, whereas the Pd-Ag membrane exhibited a higher flux of 0.76 mol/m2·s under the same conditions. The separation factor in the H2/N2 mixed gas experiment was measured to be 2626 for the Pd membrane and 13,808 for the Pd-Ag membrane at 450℃ and 4 bar.

이 실험에서는 α-Al2O3 지지체 위에 진공 코팅(vacuum coating)과 딥 코팅(dip-coating) 기법을 사용하여 GO/γ-Al2O3 중간층을 형성하였고, 무전해도금 방식을 통해 Pd-Ag 수소 분리막을 제작하였다. Pd와 Ag는 각각 무전해도금을 통해 지지체 표면에 증착되었으며, 합금화를 위해 도금 과정 중 H2 분위기 하에서 500℃에서 18 h 동안 열처리를 진행하였다. 제조된 분리막의 표면과 단면은 SEM을 통해 분석되었으며, Pd-Ag 분리막의 두께는 1.88 ㎛, GO/γ-Al2O3 중간층을 가진 Pd-Ag 분리막의 두께는 1.07 ㎛로 측정되었다. EDS 분석을 통해 Pd-77%, Ag-23%의 조성으로 합금이 형성된 것을 확인하였다. 기체투과 실험은 H2 단일가스와 H2/N2 혼합가스를 이용하여 수행되었다. H2 단일가스 투과실험에서 450℃, 4 bar 조건하에서 Pd 분리막의 최대 H2 플럭스는 0.53 mol/m2·s로, Pd-Ag 분리막의 경우 0.76 mol/m2·s로 측정되었다. H2/N2 혼합가스 실험에서 측정된 분리막의 separation factor는 450℃, 4 bar 조건에서 Pd 분리막이 2626, Pd-Ag 분리막이 13808로 나타났다.

Keywords

Acknowledgement

본 결과물은 환경부의 재원으로 한국환경산업기술원의 대기환경 괸리기술 사업화 연계 기술개발사업의 지원을 받아 연구되었습니다.(과제번호: RE202103386, 과제명: 블루 수소충전소용 수소 정제분리 시스템 실증기술개발-Technology development of hydrogen purification membrane separation demonstration for blue hydrogen station)

References

  1. V. A. Sadykov, A. B. Krasnov, Y. E. Fedorova, A. I. Lukashevich, Y. N. Bespalko, N. F. Eremeev, P. I. Skriabin, K. R. Valeev, and O. L. Smorygo, "Novel nanocomposite materials for oxygen and hydrogen separation membranes", Int. J. Hydrog. Energy, 45, 13575-13585 (2020).
  2. Y. Wang, B. Seo, B. Wang, N. Zamel, K. Jiao, and X. C. Adroher, "Fundamentals, materials, and machine learning of polymer electrolyte membrane fuel cell technology", Energy AI, 1, 100014 (2020).
  3. N. Pal, M. Agarwal, K. Maheshwari, and Y. S. Solanki, "A review on types, fabrication and support material of hydrogen separation membrane", Mater. Today, 28, 1386-1391 (2020).
  4. S. Zaman, L. Huang, A. I. Douka, H. Yang, B. You, B. and Y. Xia, "Progress and perspective on oxygen reduction electrocatalysts toward practical fuel cells", Angew. Chem., Int. Ed., 60, 17832-17852 (2021).
  5. L. Van Biert, M. Godjevac, K. Visser, and P. V. Aravind, "A review of fuel cell systems for maritime applications", J. Power Sources, 327, 345-364 (2016).
  6. A. Murugan and A. S. Brown, "Review of purity analysis methods for performing quality assurance of fuel cell hydrogen", Int. J. Hydrog. Energy, 40, 4219-4233 (2015).
  7. A. Golmakani, S. Fatemi, and J. Tamnanloo, "Investigating PSA, VSA, and TSA methods in SMR unit of refineries for hydrogen production with fuel cell specification", Sep. Purif. Technol., 176, 73-91 (2017).
  8. X. Zhang, G. Xiong, and W. Yang, "A modified electroless plating technique for thinense palladium composite membranes with enhanced stability", J. Membr. Sci., 314, 226-237 (2008).
  9. R. S. Souleimanova, A. S. Mukasyan, and A. Varma, "Study of structure formation uring electro-less plating of thin metal-composite embranes", Chem. Eng. Sci., 54, 3369-3377 (1999).
  10. A. M. Tarditi and L. M. Cornaglia, "Novel PdAgCu ternary alloy as promising materials for hydrogen separation membranes: Synthesis and characterization", Surf. Sci., 605, 62-71 (2011).
  11. S. Yun and S. T. Oyama, "Correlations in palladium membranes for hydrogen separation: A review", J. Membr. Sci., 375, 28-45 (2011).
  12. J. Melendez, N. D. Nooijer, K. Coenen, E. Fernandez, J. L. Viviente, M. S. Annaland, P. L. Arias, D. A. Pacheco Tanaka, and F. Gallucci, "Effect of Au addition on hydrogen permeation and the resistance to H2S on Pd-Ag alloy membranes", J. Membr. Sci., 542, 329-341 (2017).
  13. F. Roa and J. D. Way, "Influence of alloy composition and membrane fabrication on the pressure dependence of the hydrogen flux of palladium-copper membranes", Ind. Eng. Chem. Res., 42, 5827-5835 (2003).
  14. X Zhuang, E. Magnone, M. C. Shin, J. I. Lee, J. Y. Hwang. Y. C. Choi, and J. H. Park, "Novel TiO2/GO-Al2O3 hollow fiber nanofiltration membrane for desalination and lignin recovery", Membranes, 12, 950 (2022).