DOI QR코드

DOI QR Code

Crosslinked PEO Membranes Embedded with Graphene Oxide: Effect of Flake Size on Molecular and Ionic Transport

그래핀 옥사이드를 포함한 PEO 가교 막: 분자 및 이온 전도에 미치는 플레이크 크기의 영향

  • Jun Kyu Jang (Department of Energy Engineering, Hanyang University) ;
  • Ho Bum Park (Department of Energy Engineering, Hanyang University)
  • 장준규 (한양대학교 에너지공학과) ;
  • 박호범 (한양대학교 에너지공학과)
  • Received : 2024.10.11
  • Accepted : 2024.10.22
  • Published : 2024.10.30

Abstract

A nanocomposite of graphene oxide (GO), poly(ethylene glycol) diacrylate (PEGDA), and poly(ethylene glycol) methyl ether acrylate (PEGMEA) was synthesized through UV photopolymerization. We achieved uniform dispersion of GO within the crosslinked poly(ethylene oxide)-based (XPEO) matrix at concentrations up to 1.0 wt%. At higher concentrations, GO tended to aggregate. The well-dispersed GO formed an additional chemical crosslinked network with the hydrophilic PEO chains. The XPEO-GO nanocomposite demonstrated improved mechanical strength and enhanced barrier properties against salts and gases, depending on GO concentration. This work details the preparation and characterization of XPEO-GO hydrogels with varying GO concentrations and flake sizes. These properties suggest potential applications of the nanocomposite hydrogel in reinforced XPEO-based biomaterials and advanced antibacterial ultrafiltration (UF) hydrophilic coatings.

그래핀 산화물(GO), 폴리에틸렌 글리콜 다이아크릴레이트(PEGDA), 폴리에틸렌 글리콜 메틸 에터 아크릴레이트(PEGMEA)의 나노복합체를 자외선 광중합을 통해 합성하였다. GO는 가교된 폴리에틸렌 옥사이드(XPEO) 매트릭스 내에 최대 1.0 wt% 농도까지 균일하게 분산시켰다. 더 높은 농도에서는 GO가 응집되는 경향을 보였다. 잘 분산된 GO는 친수성 PEO 사슬과 추가적인 화학적 가교 네트워크를 형성했다. XPEO-GO 나노복합체는 GO 농도에 따라 기계적 강도 및 염과 가스에 대한 차단 특성이 향상된 것으로 나타났다. 이 연구는 다양한 GO 농도와 플레이크 크기를 가진 XPEO-GO 하이드로겔의 제조 및 특성화를 다루고 있다. 이러한 특성은 나노복합 하이드로겔이 강화된 XPEO 기반 바이오소재 및 고급 항균성 한외여과(UF) 친수성 코팅에서의 잠재적 응용 가능성을 시사한다.

Keywords

Acknowledgement

This work was supported by the Materials & Components Technology Development Program (Project number: 20011497) funded by the Ministry of Trade, Industry, & Energy (MOTIE, Korea).

References

  1. K. Novoselov, A. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva, and A. Firsov, "Electric field effect in atomically thin carbon membranes", Science, 306, 666-669 (2004).
  2. C. Lee, X. Wei, J. W. Kysar, and J. Hone, "Measurement of the elastic properties and intrinsic strength of monolayer graphene", Science, 321, 385-388 (2008).
  3. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, "Superior thermal conductivity of single-layer graphene", Nano Lett., 8, 902-907 (2008).
  4. X. Du, I. Skachko, A. Barker, and E. Y. Andrei, "Approaching ballistic transport in suspended graphene", Nat. Nanotech., 3, 491-495 (2008).
  5. J. S. Bunch, S. S. Verbridge, J. S. Alden, A. M. Van Der Zande, J. M. Parpia, H. G. Craighead, and P. L. McEuen, "Impermeable atomic membranes from graphene sheets", Nano Lett., 8, 2458-2462 (2008).
  6. H. Wu and L. T. Drzal, "Graphene nanoplatelet paper as a light-weight nanocomposite with excellent electrical and thermal conductivity and good gas barrier properties", Carbon, 50, 1135-1145 (2012).
  7. C. S. Wu and H. T. Liao, "Study on the preparation and characterization of biodegradable polylactide/multi-walled carbon nanotubes nanocomposites", Polymer, 48, 4449-4458 (2007).
  8. J. H. Chang, Y. U. An, and G. S. Sur, "Poly(lactic acid) nanocomposites with various organoclays. I. Thermomechanical properties, morphology, and gas permeability", J. Polym. Sci. Part B: Polym. Phys., 41, 94-103 (2002).
  9. J. R. Potts, D. R. Dreyer, C. W. Bielawski, and R. S. Ruoff, "Graphene-based polymer nanocomposites", Polymer, 52, 5-25 (2011).
  10. H. D. Huang, P. G. Ren, J. Chen, W. Q. Zhang, X. Ji, and Z. M. Li, "High barrier graphene oxide nanosheet/poly(vinyl alcohol) nanocomposite membranes", J. Membr. Sci., 409, 156-163 (2012).
  11. A. M. Pinto, J. Cabral, D. A. Pacheco Tanaka, A. M. Mendes, and F. D. Magalhaes, "Effect of incorporation of graphene oxide and graphene nanoplatelets on mechanical and gas permeability properties of poly (lactic acid) membranes", Polym. Int., 62, 33-40 (2013).
  12. K. Haraguchi, "Nanocomposite hydrogels", Curr. Opin. Solid State Mater. Sci., 11, 47-54 (2007).
  13. M. Kokabi, M. Sirousazar, and Z. M. Hassan, "PVA-clay nanocomposite hydrogels for wound dressing", Eur. Polym. J., 43, 773-781 (2007).
  14. Y. Tanaka, J. P. Gong, and Y. Osada, "Novel hydrogels with excellent mechanical performance", Prog. Polym. Sci., 30, 1-9 (2005).
  15. C. W. Chang, A. van Spreeuwel, C. Zhang, and S. Varghese, "PEG/clay nanocomposite hydrogel: A mechanically robust tissue engineering scaffold", Soft Matter, 6, 5157-5164 (2010).
  16. E. Dunkerley and D. Schmidt, "Effects of composition, orientation and temperature on the O2 permeability of model polymer/clay nano composites", Macromolecules, 43, 10536-10544 (2010).
  17. A. Lerf, H. He, M. Forster, and J. Klinowski, "Structure of graphite oxide revisited", J. Phys. Chem. B, 102 (1998) 4477-4482.
  18. D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, "The chemistry of graphene oxide", Chem. Soc. Rev., 39, 228-240 (2010).
  19. W. S. Hummers Jr and R. E. Offeman, "Preparation of graphitic oxide", J. Am. Chem. Soc., 80, 1339-1339 (1958).
  20. A. C. Sagle, H. Ju, B. D. Freeman, M. M. Sharma, "PEG-based hydrogel membrane coatings", Polymer, 50, 756-766 (2009).
  21. A. C. Sagle, E. M. Van Wagner, H. Ju, B. D. McCloskey, B. D. Freeman, and M. M. Sharma, "PEG-coated reverse osmosis membranes: Desalination properties and fouling resistance", J. Memb. Sci., 340, 92-108 (2009).
  22. Y. H. La, B. D. McCloskey, R. Sooriyakumaran, A. Vora, B. Freeman, M. Nassar, J. Hedrick, A. Nelson, and R. Allen, "Bifunctional hydrogel coatings for water purification membranes: Improved fouling resistance and antimicrobial activity", J. Membr. Sci., 372, 285-291 (2011).
  23. B. D. McCloskey, H. B. Park, H. Ju, B. W. Rowe, D. J. Miller, and B. D. Freeman, "A bioinspired fouling-resistant surface modification for water purification membranes", J. Membr. Sci., 413, 82-90 (2012).
  24. H. Ju, B D. McCloskey, A. C. Sagle, V. A. Kusuma, and B. D. Freeman, "Preparation and characterization of crosslinked poly(ethylene glycol) diacrylate hydrogels as fouling-resistant membrane coating materials", J. Membr. Sci., 330, 180-188 (2009).
  25. M. L. Luo, J. Q. Zhao, W. Tang, and C. S. Pu, "Hydrophilic modification of poly(ether sulfone) ultrafiltration membrane surface by self-assembly of TiO2 nanoparticles", Appl. Surf. Sci., 249, 76-84 (2005).
  26. E. Ostuni, R. G. Chapman, R. E. Holmlin, S. Takayama, and G. M. Whitesides, "A survey of structure-property relationships of surfaces that resist the adsorption of protein", Langmuir, 17, 5605-5620 (2001).
  27. F. Yao, G. D. Fu, J. Zhao, E. T. Kang, and K. G. Neoh, "Antibacterial effect of surface- functionalized polypropylene hollow fiber membrane from surface-initiated atom transfer radical polymerization", J. Membr. Sci., 319, 149-157 (2008).
  28. J. G. Jung, J. H. Kim, J. Moon, J. H. Kang, Y. J. Kim, and H. B. Park, "Enhanced antibacterial activity of poly(vinyl alcohol)-graphene composites via graphene oxide surfactancy", J. Appl. Polym. Sci., 141, e55910 (2024).
  29. H. Yasuda, L. Ikenberry, and C. Lamaze, "Permeability of solutes through hydrated polymer membranes. Part II. Permeability of water soluble organic solutes", Makromol. Chem., 125, 108-118 (1969).
  30. H. Ju, A. C. Sagle, B. D. Freeman, J. I. Mardel, and A. J. Hill, "Characterization of sodium chloride and water transport in crosslinked poly(ethylene oxide) hydrogels", J. Membr. Sci., 358, 131-141 (2010).
  31. H. Lin and B. D. Freeman, "Gas permeation and diffusion in cross-linked poly(ethylene glycol diacrylate)", Macromolecules, 39, 3568-3580 (2006).
  32. Z. Ping, Q. Nguyen, S. Chen, J. Zhou, and Y. Ding, "States of water in different hydrophilic polymers-DSC and FTIR studies", Polymer, 42, 8461-8467 (2001).
  33. H. A. Baghdadi, H. Sardinha, and S. R. Bhatia, "Rheology and gelation kinetics in laponite dispersions containing poly(ethylene oxide)", J. Polym. Sci. Part B: Polym. Phys., 43, 233-240 (2004).
  34. O. Okay and W. Oppermann, "Polyacrylamide-clay nanocomposite hydrogels: Rheological and light scattering characterization", Macromolecules, 40, 3378-3387 (2007).
  35. L. E. Nielsen, "Models for the permeability of filled polymer systems", J. Macromol. Sci. Chem., 1, 929-942 (1967).
  36. G. Choudalakis and A. Gotsis, "Permeability of polymer/clay nanocomposites: A review", Eur. Polym. J., 45, 967-984 (2009).
  37. H. Lin, E. Van Wagner, B. D. Freeman, L. G. Toy, and R. P. Gupta, "Plasticization-enhanced hydrogen purification using polymeric membranes", Science, 311, 639-642 (2006).