DOI QR코드

DOI QR Code

고분자 전해질 복합체를 통해 제조된 aqueous phase separation membranes에 대한 총론

Aqueous Phase Separation Membranes Prepared by Polyelectrolyte Complexation: A Review

  • 조광민 (전남대학교 고분자공학과 대학원) ;
  • 정예진 (전남대학교 고분자융합소재공학부) ;
  • 김지우 (전남대학교 고분자융합소재공학부) ;
  • 고영운 (전남대학교 고분자공학과 대학원)
  • Gwangmin Jo (Department of Polymer Engineering, Graduate School, Chonnam National University) ;
  • Yejin Jeong (School of Polymer Science and Engineering, Chonnam National University) ;
  • Jiwoo Kim (School of Polymer Science and Engineering, Chonnam National University) ;
  • Yeongun Ko (Department of Polymer Engineering, Graduate School, Chonnam National University)
  • 투고 : 2024.08.31
  • 심사 : 2024.09.30
  • 발행 : 2024.10.30

초록

멤브레인 기술은 폐수 처리, 담수화, 혈액 투석 등의 분리 공정에서 사용되고 있다. 하지만, 고분자 멤브레인을 만들기 위해 사용되는 비용매상전이 방식에서 환경에 유해하고 독성인 유기 용매를 사용한다는 문제점이 있다. 따라서 비용매상전이 방식에서 사용되는 유기 용매를 물로 대체해 고분자 멤브레인을 제작하는 aqueous phase separation (APS) 방법이 주목받고 있다. 본 총설에서는 APS의 원리와 APS를 통한 멤브레인의 제작 공정을 소개하고자 한다. 멤브레인의 구조는 단량체의 비율, 수용액의 pH와 염 농도 차이, 캐스팅 용액의 점도, 가교제 농도를 통해 조절할 수 있다.

Membrane technology has been used in separation processes such as wastewater treatment, desalination, and hemolysis. However, in proccess of the non-solvent-induced phase separation (NIPS) which is the most widely adopted method for fabricating porous polymer membranes, using toxic organic solvents is a critical problem for environmental aspect. To resolve this problem, the aqueous phase separation (APS) has received attention, which produces polymeric membranes without using the organic solvent. In this review, we provide principle and process of APS. The ratio of monomers, pH and salt concentration in aqueous solution, viscosity of casting solutions, and concentration of cross-linkers can leverage the structures of membranes.

키워드

과제정보

이 논문은 2021년도 교육부의 재원으로 한국연구재단의 지원을 받아 수행된 지자체-대학 협력기반 지역혁신 사업의 결과임(과제번호: 2021RIS-002). 또한, 이 논문은 전남대학교 학술연구비(과제번호: 2024-0369)지원에 의하여 연구되었음.

참고문헌

  1. S. P. Nunes, P. Z. Culfaz-Emecen, G. Z. Ramon, T. Visser, G. H. Koops, W. Jin, and M. Ulbricht, "Thinking the future of membranes: Perspectives for advanced and new membrane materials and manufacturing processes", J. Memb. Sci., 598, 117761 (2020).
  2. B. S. Lalia, V. Kochkodan, R. Hashaikeh, and N. Hilal, "A review on membrane fabrication: Structure, properties and performance relationship", Desalination, 326, 77 (2013).
  3. M. Mulder, "Membrane preparation", Encyclopedia of Separation Science: Phase inversion membranes, pp. 3331-3346, Elsevier, Londen (2000)
  4. D. Kim and S. P. Nunes, "Green solvents for membrane manufacture: Recent trends and perspectives", Curr. Opin. Green. Sustain. Chem., 28, 100427 (2021).
  5. M. I. Baig, E. N. Durmaz, J. D. Willott, and W. M. de Vos, "Sustainable membrane production through polyelectrolyte complexation induced aqueous phase separation", Adv. Funct. Mater., 30, 1907344 (2020).
  6. M. I. Baig, J. D. Willott, and W. M. De Vos, "Enhancing the separation performance of aqueous phase separation-based membranes through polyelectrolyte multilayer coatings and interfacial polymerization", ACS Appl. Polym. Mater., 3, 3560 (2021).
  7. V. S. Meka, M. K. G. Sing, M. R. Pichika, S. R. Nali, V. R. M. Kolapalli, and P. Kesharwani, "A comprehensive review on polyelectrolyte complexes", Drug Discov. Today, 22, 1697 (2017).
  8. A. D. Kulkarni, Y. H. Vanjari, K. H. Sancheti, H. M. Patel, V. S. Belgamwar, S. J. Surana, and C. V. Pardeshi, "Polyelectrolyte complexes: Mechanisms, critical experimental aspects, and applications", Artif Cells Nanomed Biotechnol, 44, 1615 (2016).
  9. E. Tsuchida, "Formation of polyelectrolyte complexes and their structures", J. Macromol. Sci. A, 31, 1 (1994).
  10. D. V. Pergushov, A. H. E. Muller, and F. H. Schacher, "Micellar interpolyelectrolyte complexes", Chem. Soc. Rev., 41, 6888 (2012).
  11. S. Manoj Lalwani, C. I. Eneh, and J. L. Lutkenhaus, "Emerging trends in the dynamics of polyelectrolyte complexes", Phys. Chem. Chem. Phys., 22, 24157 (2020).
  12. A. M. Rumyantsev, N. E. Jackson, and J. J. De Pablo, "Polyelectrolyte complex coacervates: Recent developments and new frontiers", Annu. Rev. Condens. Matter Phys., 12, 155 (2020).
  13. Y. Zhang, P. Batys, J. T. O'Neal, F. Li, M. Sammalkorpi, and J. L. Lutkenhaus, "Molecular origin of the glass transition in polyelectrolyte assemblies", ACS Cent. Sci., 4, 638 (2018).
  14. Q. Wang and J. B. Schlenoff, "The polyelectrolyte complex/coacervate continuum", Macromolecules, 47, 3108 (2014).
  15. H. N. Po and N. M. Senozan, "The Henderson-Hasselbalch equation: Its history and limitations", J. Chem. Educ., 78, 1499 (2001).
  16. E. N. Durmaz, J. D. Willott, A. Fatima, and W. M. de Vos, "Weak polyanion and strong polycation complex based membranes: Linking aqueous phase separation to traditional membrane fabrication", Eur. Polym. J., 139, 110015 (2020).
  17. K. Sadman, D. E. Delgado, Y. Won, Q. Wang, K. A. Gray, and K. R. Shull, "Versatile and high-throughput polyelectrolyte complex membranes via phase inversion", ACS Appl. Mater. Interfaces, 11, 16018 (2019).
  18. G. R. Guillen, Y. Pan, M. Li, and E. M. V. Hoek, "Preparation and characterization of membranes formed by nonsolvent induced phase separation: A review", Ind. Eng. Chem. Res., 50, 3798 (2011).
  19. E. N. Durmaz, M. I. Baig, J. D. Willott, and W. M. De Vos, "Polyelectrolyte complex membranes via salinity change induced aqueous phase separation", ACS Appl. Polym. Mater., 2, 2612 (2020).
  20. M. M. Haque Mizan, M. Rastgar, S. A. Aktij, A. Asad, P. Karami, A. Rahimpour, and M. Sadrzadeh, "Organic solvent-free polyelectrolyte complex mem-brane preparation: Effect of monomer mixing ratio and casting solution temperature", J. Memb. Sci., 668, 121197 (2023).
  21. E. N. Durmaz, J. D. Willott, M. M. H. Mizan, and W. M. de Vos, "Tuning the charge of polyelectrolyte complex membranes prepared via aqueous phase separation", Soft Matter, 17, 9420 (2021).
  22. F. P. Cuperus and C. A. Smolders, "Characterization of UF membranes", Adv. Colloid. Interface Sci., 34, 135 (1991).
  23. H. Strathmann, K. Kock, P. Amar, and R. W. Baker, "The formation mechanism of asymmetric membranes", Desalination, 16, 179 (1975).
  24. W. M. Nielen, J. D. Willott, Z. M. Esguerra, and W. M. de Vos, "Ion specific effects on aqueous phase separation of responsive copolymers for sustainable membranes", J. Colloid. Interface. Sci., 576, 186 (2020).
  25. M. I. Baig, P. P. I. Sari, J. Li, J. D. Willott, and W. M. de Vos, "Sustainable aqueous phase separation membranes prepared through mild pH shift induced polyelectrolyte complexation of PSS and PEI", J. Memb. Sci., 625, 119114 (2021).
  26. M. I. Baig, J. D. Willott, and W. M. de Vos "Tuning the structure and performance of polyelectrolyte complexation based aqueous phase separation membranes", J. Memb. Sci., 615, 118502 (2020).
  27. E. Yakhshi-Tafti, R. Kumar, and H. J. Cho, "Measurement of surface interfacial tension as a function of temperature using pendant drop images", Int. J. Optomechatronics, 5, 393 (2011).
  28. E. W. Flick, "Industrial Solvents Handbook", Noyes Data Corporation, Westwood, New Jersey (1991).
  29. S. Tang, J. Gong, Y. Shi, S. Wen, and Q. Zhao, "Spontaneous water-on-water spreading of polyelectrolyte membranes inspired by skin formation", Nat. Commun., 13, (2022).
  30. J. Luo, S. Song, H. Zhang, H. Zhang, J. Zhang, and Y. Wan, "Biocatalytic membrane: Go far beyond enzyme immobilization", Eng. Life Sci., 20, 441 (2020).
  31. J. J. van Lente, M. I. Baig, W. M. de Vos, and S. Lindhoud, "Biocatalytic membranes through aqueous phase separation", J. Colloid Interface Sci., 616, 903 (2022).
  32. M. A. Restrepo, S. Emonds, A. Zhao, F. Karakas, J. Kamp, H. Roth, and M. Wessling "Self-supporting biocatalytic polyelectrolyte complex hollow fiber membranes via salt-dilution induced phase separation", J. Memb. Sci., 689, 122157 (2024).