DOI QR코드

DOI QR Code

Fabrication and Application of Pore-filled Cation-exchange Membranes Containing both Sulfonic and Phosphonic Acid Groups

설폰산기와 포스폰산기를 함께 포함한 세공충진 양이온 교환막의 제조 및 응용

  • Min-Kyu Shin (Department of Green Chemical Engineering, Sangmyung University) ;
  • Ji-Hyeon Lee (Department of Green Chemical Engineering, Sangmyung University) ;
  • Moon-Sung Kang (Department of Green Chemical Engineering, Sangmyung University)
  • 신민규 (상명대학교 그린화학공학과) ;
  • 이지현 (상명대학교 그린화학공학과) ;
  • 강문성 (상명대학교 그린화학공학과)
  • Received : 2024.10.16
  • Accepted : 2024.10.21
  • Published : 2024.10.30

Abstract

In this study, we studied the fabrication of a cation-exchange membrane (CEM) with high permselectivity for monovalent ions that can be applied to an electrodialysis (ED) process for efficient separation of acid-metal ions from acid wastewater. The pore-filled cation-exchange membranes (PFCEMs) were fabricated by filling a porous substrate with sodium 4-vinylbenzenesulfonate (NaSS) monomers having sulfonic acid groups and vinylphosphonic acid (VPA) monomers having phosphonic acid groups together with a crosslinker into an asymmetric structure and in-situ photopolymerization. The fabricated PFCEMs had a slightly lower ion-exchange capacity than that of a commercial membrane, but they exhibited electrical resistance and mechanical properties suitable for practical applications. The permselectivity of the PFCEMs fabricated with various NaSS:VPA molar ratios and a commercial membrane (CSE, Astom, Japan) in H+/Fe2+ mixed solutions was measured. The best permselectivity was confirmed at the condition of NaSS:VPA = 25:75, which was more than 10 higher than that of the commercial membrane. In addition, the ED results of H+/Fe2+ mixed solution using the optimally fabricated membrane showed excellent acid-metal ion separation performance compared to the commercial membrane. The CEM including both sulfonic acid groups with excellent ion conductivity and phosphonic acid groups with strong binding affinity for metal ions is expected to be effective in separating various valuable metal ions in addition to Fe2+ from acid waste solutions.

본 연구에서는 산 폐수에서 효율적인 산-금속이온 분리를 위한 전기투석 공정에 적용할 수 있는 1가 이온에 대한 높은 선택성을 가진 양이온 교환막의 제조에 관한 연구를 수행하였다. 설폰산기를 가진 sodium 4-vinylbenzenesulfonate (NaSS), 포스폰산기를 가진 vinylphosphonic acid (VPA) 단량체 및 가교제를 비대칭 구조의 다공성 지지체에 충진하고 in-situ 광중합을 통해 세공충진 양이온 교환막을 제조하였다. 제조된 세공충진 양이온 교환막은 상용막 대비 이온교환용량이 다소 낮았으나 실제 응용에 적합한 수준의 전기적 저항 및 기계적 물성을 나타내었다. 다양한 NaSS:VPA 몰 비율로 제조된 세공충진 양이온 교환막과 상용막(CSE, Astom, Japan)의 H+/Fe2+ 혼합용액에서의 선택투과도를 측정한 결과 NaSS:VPA = 25:75 조건에서 가장 우수한 선택투과도를 확인하였으며 이는 상용막 대비 10 이상 높은 값이었다. 또한 최적 조건의 제조막을 이용한 H+/Fe2+ 혼합용액의 전기투석 결과 상용막 대비 우수한 산-금속 이온 분리 성능을 확인할 수 있었다. 이온전도성이 우수한 설폰산기와 금속이온에 대한 결합력이 강한 포스폰산을 함께 도입한 양이온 교환막은 Fe2+ 이외에도 산 폐액으로부터 다양한 유가 금속이온을 분리하는 데 효과적일 것으로 기대된다.

Keywords

Acknowledgement

이 연구는 산업통상자원부 및 산업기술평가관리원의 지원(20010491)과 2023년도 환경부(MOE)의 재원으로 한국환경산업기술원(KEITI)의 녹색복원 특성화대학원 전문인력양성 지원사업의 지원을 받아 수행되었습니다. 또한 도레이첨단소재사의 지지체 제공에 감사드립니다.

References

  1. C. Ponce de Leόn, A. Frias-Ferrer, J. GonzalezGarcia, D. A. Szanto, and F. C. Walsh, "Redox flow cells for energy conversion", J. Power Sources, 160, 716 (2006).
  2. V. Fernao Pires, E. Romero-Cadaval, D. Vinnikov, I. Roasto, and J. F. Martins, "Power converter interfaces for electrochemical energy storage systems - A review", Energy Convers. Manag., 86, 453 (2014).
  3. M. Skyllas-Kazacos, M. H. Chakrabarti, S. A. Haijmolana, F. S. Mjalli, and M. Saleem, "Progress in flow battery research and development", J. Electrochem. Soc., 158, R55 (2011).
  4. A. Z. Weber, M. M. Mench, J. P. Meyers, P. N. Ross, J. T. Gostick, and Q. Liu, "Redox flow batteries: A review", J. Appl. Electrochem., 41, 1137 (2011).
  5. J. P. Barton and D. G. Infield, "Energy storage and its use with intermittent renewable energy", IEEE Trans. Energy Conversion, 19, 441 (2004).
  6. H. Chen, T. N. Cong, W. Yang, C. Tan, Y. Li, and Y. Ding, "Progress in electrical energy storage system: A critical review", Prog. Nat. Sci., 19, 291 (2009).
  7. H. T. Chiu, J. M. Lin, T. H. Cheng, and S. Y. Chou, "Fabrication of electrospun polyacrylonitrile ion-exchange membranes for application in lysozyme", Express Polym. Lett., 5, 308-317 (2011).
  8. T. Luo, S. Abdu, and M. Wessling "Selectivity of ion exchange membranes: A review", J. Membr. Sci., 555, 429-454 (2018).
  9. J. H. Song, H. W. Yu, M. H. Ham, and I. S. Kim, "Tunable ion sieving of graphene membranes through the control of nitrogen-bonding configuration", Nano Lett., 18, 5506-5513 (2018).
  10. W. Zhang, L. Zhang, H. Zhao, B. Li, and H. Ma, "A two-dimensional cationic covalent organic framework membrane for selective molecular sieving", J. Mater. Chem. A, 6, 13331-13339 (2018).
  11. Z. Song, F. Qiu, E. W. Zaia, Z. Wang, M. Kunz, and J. Guo, "Dual-channel, molecular-sieving core/shell ZIF@MOF architectures as engineered fillers in hybrid membranes for highly selective CO2 separation", Nano. Lett., 17, 6752-6758 (2017).
  12. D. Ariono Khoiruddin and I. G. Wenten Subagjo, "Surface modification of ion-exchange membranes: methods, characteristics, and performance", J. Appl. Polym. Sci., 134, 45540-45544 (2017).
  13. M. L. Gerardo, N. H. Aljohani, D. L. Oatley-Radcliffe, and R. W. Lovitt, "Moving towards sustainable resources: Recovery and fractionation of nutrients from dairy manure digestate using membranes", Water Res., 80, 80-89 (2015).
  14. A. Lysova, I. Stenina, Y. G. Gorbunova, and A. Yaroslavtsev, "Preparation of MF-4SC composite membranes with the anisotropic distribution of polyaniline and ion transport asymmetry", Polym. Sci. Ser. B, 53, 35-41 (2011).
  15. T. Sata, T. Sata, and W. Yang, "Studies on cation-exchange membranes having permselectivity between cations in electrodialysis", J. Membr. Sci., 206, 31-60 (2002).
  16. T. Sata, T, Yoshida, and K. Matsusaki, "Transport properties of phosphonic acid and sulfonic acid cation exchange membranes", J. Membr, Sci., 120, 101-110 (1996).
  17. B. Gajda and M. B. Bogacki "The effect of tributyl phosphate on the extraction of nickel(ii) and cobalt(11) ions with di(2-ethylhexyl)phosphoric acid", Physicochem. Probl. Miner. Process., 41, 145-152 (2007).
  18. T. Yamaguchi, H. Zhou, S. Nakazawa, and N. Hara, "An extremely low methanol crossover and highly durable aromatic pore-filling electrolyte membrane for direct methanol fuel cells", Adv. Mater., 19, 592-596 (2007).
  19. S. Al-Amshawee, M. Y. B. M. Yunus, A. A. M. Azoddein, D. G. Hassell, I. H. Dakhil, and H. A. Hasan, "Electrodialysis desalination for water and wastewater: A review", J. Chem. Eng., 380, 122231-122249 (2020).
  20. H.-N. Moon, H.-B. Song, and M.-S. Kang, "Thin reinforced ion-exchange membranes containing flourine moiety for all-vanadium redox flow battery", Membranes, 11, 867-884 (2021).
  21. M. -S. Kang, Y. Choi, and S. -H Moon. "Water-swollen cation-exchange membranes prepared using poly(vinyl alcohol)(PVA)/poly(styrene sulfonic acid-co-maleic acid)(PSSA-MA)", J. Membr. Sci., 207, 157-170 (2002).
  22. X. Pang, Y. Tao, Y. Xu, J. Pan, J. Shen, and C. Gao, "Enhanced monovalent selectivity of cation exchange membranes via adjustable charge density on functional layers", J. Membr. Sci., 595, 117544-117563 (2019).
  23. J. Yan, H. Wang, R. Fu, R. Fu, R. Li, B. Chen, C. Jiang, L. Ge, Z. Liu, Y. Wang, and T. Xu, "Ion exchange membranes for acid recovery: Diffusion dialysis (DD) or selective electrodialysis (SED)?", Desalination, 531, 115690-115698 (2022).
  24. L. Tao, X Wang, F. Wu, B. Wang, C. Gao, and X. Gao, "Highly efficient Li+/Mg2+ separation of monovalent cation permselective membrane enhanced by 2D metal organic framework nanosheets", Sep. Purif. Technol., 296, 121309 (2022).
  25. M. Ji, J. Luo, J. Wei, J. Woodley, A. E. Daugaard, and M. Pinelo, "Commercial polysulfone membranes pretreated with ethanol and NaOH: Effects on permeability, selectivity and antifouling properties", Sep. Purif. Technol., 219, 81-89 (2019).
  26. L. A. Forato, R. Bernardes-Filho, and L. A. Colnago, "Protein structure in KBr pellets by infrared spectroscopy", Anal. Biochem., 259, 136-141 (1998).
  27. S. Laishevkina, O. Iakobson, N. Saprykina, A. Dobrodumov, V. Chelibanov, E. Tomsik, and N. Shevchenko, "Hydrophilic polyelectrolyte microspheres as a template for poly (3, 4-ethylenedioxythiophene) synthesis", Soft Matter, 19, 4144-4154 (2023).
  28. E. Seref, P. Ilgin, O. Ozay, and H. Ozay, "A new candidate for wound dressing materials: s-IPN hydrogel-based highly elastic and pH-sensitive drug delivery system containing pectin and vinyl phosphonic acid", Eur. Polym. J., 207, 112824 (2024).
  29. A. K. Das and V. K. Shahi, "Acid stable bi-functional cation exchange membrane based on modified poly (vinylidene fluoride-co-hexafluoropropylene) for electrochemical Bunsen process", J. Power Sources, 450, 227622 (2020).
  30. C. Klaysom, S. H. Moon, B. P. Ladewig, G. M. Lu, and L. Wang, "Preparation of porous ion-exchange membranes (IEMs) and their characterizations", J. Membr. Sci., 371, 37-44 (2011).