DOI QR코드

DOI QR Code

Adsorptive Coating of Zeolite MFI Nanosheets via Hydrophobic Surface Modification for Fabricating Zeolite Membranes

소수성 표면개질을 통한 제올라이트 나노막 흡착 코팅 및 멤브레인 제작

  • Sukho Park (School of Chemical Engineering, Chonnam National University) ;
  • Seoeun Oh (School of Chemical Engineering, Chonnam National University) ;
  • Sangram Bhoite (School of Chemical Engineering, Chonnam National University) ;
  • Donghun Kim (School of Chemical Engineering, Chonnam National University)
  • Received : 2024.10.11
  • Accepted : 2024.10.18
  • Published : 2024.10.30

Abstract

Porous two-dimensional (2D) materials offer unprecedented opportunities for the fabrication of ultra-selective separation membranes, owing to their unique morphological characteristics, including high aspect ratios, large lateral dimensions, and thicknesses of a few nanometers. A coating method is a prerequisite for distributing 2D materials uniformly and densely on substrates and obtaining membranes with the desired microstructures and morphologies for use in membrane separation applications. We develop a facile and versatile coating method based on the adsorption of zeolite MFI nanosheets. Zeolite MFI nanosheets, synthesized directly using diammonium cations, exhibit a surface-active property and can be concentrated at water-hydrophobe interfaces. Hydrophobically modifying the surfaces of substrates broadens the applicability of the coating method to various substrates, regardless of their porosities and curvatures. Repetition of the adsorptive coating process easily yields full-coverage nanosheet coatings that can be further intergrown into continuous MFI thin films and membranes. This facile coating method will allow the arrangement of zeolite MFI nanosheets and possibly other 2D materials to be easily manipulated, thereby enhancing the benefits of 2D materials in various applications.

높은 종횡비와 원자 수준의 얇은 두께를 갖는 다공성 2D 소재는 고성능 분리막 제작에 활용된다. 이를 위해서는 다공성 2D 소재를 다공성 지지체 위에 균일하게 도포할 수 있는 코팅법이 필수이다. 본 연구는 이를 위한 제올라이트 MFI 나노막의 간단하면서도 효과적인 코팅법을 제시한다. 직접합성법으로 합성된 제올라이트 MFI 나노막은 물에 분산되면서 동시에 표면 활성을 보여, 이 특성을 활용하여 소수성 계면에 흡착시키는 것이 가능하다. 소수성 개질을 다양한 형태의 지지체에 적용하여, 이들 표면에 고밀도의 나노막 흡착 코팅이 가능함을 보였다. 또한, 이 흡착코팅의 반복 수행을 통해 나노막의 완전피복을 달성하고, 이를 연속적인 MFI 필름 및 멤브레인으로 성장시킬 수 있었다. 이 간단한 코팅법은 제올라이트 나노막뿐만 아니라, 표면활성을 보이는 다른 2D 소재에도 적용 가능할 것으로 보이며, 2D 소재의 활용도를 제고할 수 있을 것이다.

Keywords

Acknowledgement

This study was partly supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20228A10100040) and by Chonnam National University (Grant number 2020-1856). The authors are grateful to the Center for Research Facilities at the Chonnam National University for their assistance in analyzing the structure and morphology of the zeolite MFI nanosheets and films/membranes (FE-SEM, CFM, and XRD).

References

  1. K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V Khotkevich, S. V Morozov, and A. K. Geim, "Two-dimensional atomic crystals", Proc. Natl. Acad. Sci., 102, 10451-10453 (2005).
  2. S. Cahangirov, M. Topsakal, E. Akturk, H. Sahin, and S. Ciraci, "Two- and one-dimensional honeycomb structures of silicon and germanium", Phys. Rev. Lett., 102, 236804 (2009).
  3. J. N. Coleman, M. Lotya, A. O'Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, I. V Shvets, S. K. Arora, G. Stanton, H.-Y. Kim, K. Lee, G. T. Kim, G. S. Duesberg, T. Hallam, J. J. Boland, J. J. Wang, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, J. M. Perkins, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, and V. Nicolosi, "Two-dimensional nanosheets produced by liquid exfoliation of layered materials", Science, 331, 568-571 (2011).
  4. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, "Single-layer MoS2 transistors", Nat. Nanotechnol., 6, 147-150 (2011).
  5. M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, and M. W. Barsoum, "Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2", Adv. Mater., 23, 4248-4253 (2011).
  6. L.-D. Zhao, S.-H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V. P. Dravid, and M. G. Kanatzidis, "Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals", Nature, 508, 373-377 (2014).
  7. Y. Ling, J. Wu, L. Yang, and D. Liu, "ZnS-modified carbon nitride nanosheet with enhanced performance of elemental Hg removal: An experimental and density functional theory study", Korean J. Chem. Eng., 39, 1641-1650 (2022).
  8. K. Varoon, X. Zhang, B. Elyassi, D. D. Brewer, M. Gettel, S. Kumar, J. A. Lee, S. Maheshwari, A. Mittal, C. Y. Sung, M. Cococcioni, L. F. Francis, A. V. McCormick, K. A. Mkhoyan, and M. Tsapatsis, "Dispersible exfoliated zeolite nanosheets and their application as a selective membrane", Science, 334, 72-75 (2011).
  9. T. Rodenas, I. Luz, G. Prieto, B. Seoane, H. Miro, A. Corma, F. Kapteijn, F. X. Llabres i Xamena, and J. Gascon, "Metal-organic framework nanosheets in polymer composite materials for gas separation", Nat. Mater., 14, 48-55 (2015).
  10. Z. Kang, Y. Peng, Y. Qian, D. Yuan, M. A. Addicoat, T. Heine, Z. Hu, L. Tee, Z. Guo, and D. Zhao, "Mixed matrix membranes (MMMs) comprising exfoliated 2D covalent organic frameworks (COFs) for efficient CO2 separation", Chem. Mater., 28, 1277-1285 (2016).
  11. M. A. Snyder and M. Tsapatsis, "Hierarchical nanomanufacturing: From shaped zeolite nanoparticles to high-performance separation membranes", Angew. Chem. Int. Ed., 46, 7560-7573 (2007).
  12. Z. Kang, H. Guo, L. Fan, G. Yang, Y. Feng, D. Sun, and S. Mintova, "Scalable crystalline porous membranes: Current state and perspectives", Chem. Soc. Rev., 50, 1913-1944 (2021).
  13. Y. Ying, D. Wang, and D. Zhao, "Two-dimensional material-based membranes for gas separation: Current status and future direction", Curr. Opin. Chem. Eng., 40, 100918 (2023).
  14. K. V. Agrawal, B. Topuz, T. C. T. Pham, T. H. Nguyen, N. Sauer, N. Rangnekar, H. Zhang, K. Narasimharao, S. N. Basahel, L. F. Francis, C. W. Macosko, S. Al-Thabaiti, M. Tsapatsis, and K. B. Yoon, "Oriented MFI membranes by gel-less secondary growth of sub-100 nm MFI-nanosheet seed layers", Adv. Mater., 27, 3243-3249 (2015).
  15. M. Shete, M. Kumar, D. Kim, N. Rangnekar, D. Xu, B. Topuz, K. V. Agrawal, E. Karapetrova, B. Stottrup, S. Al-Thabaiti, S. Basahel, K. Narasimharao, J. D. Rimer, and M. Tsapatsis, "Nanoscale control of homoepitaxial growth on a two-dimensional zeolite", Angew. Chem. Int. Ed. Engl., 56, 535-539 (2017).
  16. S.-D. Jiang, A. Y. K. Koh, K. H. Chong, and S. Zhang, "Opening organic solvent pathways by molybdenum disulfide in mixed matrix membranes for molecular separation", J. Memb. Sci., 585, 60-66 (2019).
  17. Y. Peng, Y. Li, Y. Ban, H. Jin, W. Jiao, X. Liu, and W. Yang, "Metal-organic framework nanosheets as building blocks for molecular sieving membranes", Science, 346, 1356-1359 (2014).
  18. R. Wang, Y. Zhou, Y. Zhang, J. Xue, J. Caro, and H. Wang, "Ultrathin covalent organic framework membranes prepared by rapid electrophoretic deposition", Adv. Mater., 34, 2204894 (2022).
  19. K. Matsuba, C. Wang, K. Saruwatari, Y. Uesusuki, K. Akatsuka, M. Osada, Y. Ebina, R. Ma, and T. Sasaki, "Neat monolayer tiling of molecularly thin two-dimensional materials in 1 min", Sci. Adv., 3, e1700414 (2024).
  20. Z. Lai and M. Tsapatsis, "Gas and organic vapor permeation through b-oriented MFI membranes", Ind. Eng. Chem. Res., 43, 3000-3007 (2004).
  21. M. Y. Jeon, D. Kim, P. Kumar, P. S. Lee, N. Rangnekar, P. Bai, M. Shete, B. Elyassi, H. S. Lee, K. Narasimharao, S. N. Basahel, S. Al-Thabaiti, W. Xu, H. J. Cho, E. O. Fetisov, R. Thyagarajan, R. F. DeJaco, W. Fan, K. A. Mkhoyan, J. I. Siepmann, and M. Tsapatsis, "Ultra-selective high-flux membranes from directly synthesized zeolite nanosheets", Nature, 543, 690-694 (2017).
  22. H. H. Funke, M. G. Kovalchick, J. L. Falconer, and R. D. Noble, "Separation of hydrocarbon isomer vapors with silicalite zeolite membranes", Ind. Eng. Chem. Res., 35, 1575-1582 (1996).
  23. D. Kim, S. Ghosh, N. Akter, A. Kraetz, X. Duan, G. Gwak, N. Rangnekar, J. R. Johnson, K. Narasimharao, M. A. Malik, S. Al-Thabaiti, B. McCool, J. A. Boscoboinik, K. A. Mkhoyan, and M. Tsapatsis, "Twin-free, directly synthesized MFI nanosheets with improved thickness uniformity and their use in membrane fabrication", Sci. Adv., 8, eabm8162 (2022).
  24. S. Han, P. Liu, Y. Ma, Q. Wu, X. Meng, and F.-S. Xiao, "Calcination-free fabrication of highly b-oriented silicalite-1 zeolite films by secondary growth in the absence of organic structure-directing agents", Ind. Eng. Chem. Res., 60, 7167-7173 (2021).
  25. G. Gwak, J. Park, and D. Kim, "Morphology evolution of zeolite MFI nanosheet fragments during secondary growths", Microporous Mesoporous Mater., 349, 112424 (2023).
  26. D. Kim, M. Y. Jeon, B. L. Stottrup, and M. Tsapatsis, "para-Xylene ultra-selective zeolite MFI membranes fabricated from nanosheet monolayers at the air-water interface", Angew. Chem. Int. Ed., 57, 480-485 (2018).
  27. F. Ahangaran and A. H. Navarchian, "Recent advances in chemical surface modification of metal oxide nanoparticles with silane coupling agents: A review", Adv. Colloid Interface Sci., 286, 102298 (2020).
  28. C. E. Pyo and J. H. Chang, "Hydrophobic mesoporous silica particles modified with nonfluorinated alkyl silanes", ACS Omega, 6, 16100-16109 (2021).
  29. H.-B. Zhang, R.-J. Feng, and K. Ura, "Utilizing the charging effect in scanning electron microscopy", Sci. Prog., 87, 249-268 (2004).