Acknowledgement
본 연구는 과학기술정보통신부 및 정보통신기획평가원의 인공지능융합혁신인재양성사업(IITP-2023-RS-2023-00256629)과 대학ICT연구센터사업의 연구결과로 수행되었음 (IITP-2024-RS-2024-00437718)
References
- 김건희, and 장철영, "빅데이터를 이용한 무인 점포범죄 연구," 한국위기관리논집, 제18권, 제9호, 95-110쪽, 2022년 https://doi.org/10.14251/crisisonomy.2022.18.9.95
- 박상욱, et al. "지능형 CCTV 기반 동적 범죄예측기술 동향," 전자통신동향분석, 제35권, 제2호, 17-27쪽, 2020년
- 최영준, 나지영, and 안준호. "무인 점포 사용자 이상행동을 탐지하기 위한 지능형 모션 패턴 인식 알고리즘," Journal of Internet Computing & Services, 제24권, 제6권, 2023년
- 염윤호. "CCTV 의 범죄예방효과 분석: 연속적 실험처치 (continuous treatment) 를 위한 용량반응모형 (dose-response model) 의 적용," 형사정책, 제31권, 제2호, 203-233쪽,
- Khan, Salman, et al. "Transformers in vision: A survey," ACM computing surveys (CSUR) 54.10s, pp. 1-41 2022. https://doi.org/10.1145/3505244
- Redmon, J., Divvala, S., Girshick, R., & Farhadi, A., "You only look once: Unified, real-time object detection," In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 779-788, 2016.
- Bochkovskiy, A., Wang, C. Y., & Liao, H. Y. M., "YOLOv4: Optimal Speed and Accuracy of Object Detection," arXiv preprint arXiv:2004.10934, 2020.
- Jiwoong Choi, Dayoung Chun, Hyun Kim, Hyuk-Jae Lee, "Gaussian YOLOv3: An Accurate and Fast Object Detector Using Localization Uncertainty for Autonomous Driving," 2019.
- Kanyifeechukwu Jane Oguine, Ozioma Collins Oguine, Hashim Ibrahim Bisallah, "YOLOv3: Visual and Real-Time Object Detection Model for Smart Surveillance Systems," 2022.
- Redmon, J., & Farhadi, A., "YOLOv3: An Incremental Improvement," arXiv preprint arXiv:1804.02767, 2018.
- Lin, T.-Y., Dollar, P., Girshick, R., He, K., Hariharan, B., & Belongie, S., "Feature Pyramid Networks for Object Detection," In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.
- Jocher, G., "YOLOv5," Retrieved from(2020). https://github.com/ultralytics/yolov5, (accessed Sep., 02, 2024).
- Google LLC, "MediaPipe," Retrieved from (2023). https://developers.google.com/mediapipe, (accessed Sep., 02, 2024).
- Lugaresi, C., et al., "MediaPipe: A Framework for Building Perception Pipelines," arXiv preprint arXiv:1906.08172, 2019.
- Hochreiter, S., & Schmidhuber, J., "Long short-term memory," Neural computation, vol. 9, no. 8, pp. 1735-1780, 1997. https://doi.org/10.1162/neco.1997.9.8.1735
- Graves, A., Supervised sequence labelling with recurrent neural networks, Springer, pp. 1-224, 2012.
- Greff, K., et al., "LSTM: A search space odyssey," IEEE transactions on neural networks and learning systems, vol. 28, no. 10, pp. 2222-2232, 2017. https://doi.org/10.1109/TNNLS.2016.2582924
- Vaswani, A., et al., "Attention is all you need," Advances in neural information processing systems, vol. 30, 2017.
- Devlin, J., et al., "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding," arXiv preprint arXiv:1810.04805, 2018.
- Liu, Y. "RoBERTa: A Robustly Optimized BERT Pretraining Approach." arXiv preprint arXiv:1907.11692 (2019).