참고문헌
- 강민정, 송상헌(2020). 초등학교 영재학급용 교수.학습 자료 개발을 위한 가변칠교판 활용 소재 발굴. 한국초등수학교육학회지, 24(1), 169-186.
- 교육부(2022). 수학과 교육과정. 교육부 고시 제 2022-33호 [별책 8]. 저자.
- 나귀수(2009). 분석법을 중심으로 한 기하 증명 지도에 대한 연구. 수학교육학연구, 19(2), 185-206.
- 나귀수, 권혁상, 김소영, 최현민, 김동원(2023). 초등학교 수학 교과서에 나타난 수학적 추론 양상 탐색: 3-4학년 도형 관련 단원을 중심으로. 수학교육학연구, 33(4), 1137-1158.
- 박교식(2007). 정사각형 칠교판의 일곱 조각으로 만들 수 있는 볼록 다각형의 탐색. 수학교육학연구, 17(3), 221-232.
- 유재근, 박문환(2019). 초등 수학에서 탐구를 위한 탱그램 과제 변형. 초등수학교육, 22(1), 95-111.
- 황지남(2015). 초등수학영재의 수학적 정당화를 위한 칠교판 활용방안 연구. 한국초등수학교육학회지, 19(4), 589-608.
- 황지남(2023). 정사각형 칠교판으로 만들 수 없는 볼록다각형에 대한 고찰. 학습자중심교과교육연구, 23(20), 985-997.
- 황지남, 이유진(2024). 논증 연구의 동향 분석: 국외의 수학교육 학술지를 중심으로. 수학교육, 63(1), 105-122.
- 황지남, 홍진곤(2024). 수학교육에서 논의하는 논증의 의미에 대하여. 수학교육철학연구, 6(1), 47-65.
- Ayalon, M., Wilkie, K. J., & Eid, K. H. (2022). Relating students' emotions during argumentative discourse to their learning of real-life functional situations. Educational Studies in Mathematics, 110(1), 23-48.
- Campbell, T. G., Boyle, J. D., & King, S. (2020). Proof and argumentation in K-12 mathematics: A review of conceptions, content, and support. International Journal of Mathematical Education in Science and Technology, 51(5), 754-774.
- Common Core State Standards Initiative (2010). Common core state standards for mathematics. Retrieved from https://learning.ccsso.org/wp-content/uploads/2022/11/ADA-Compliant-Math-Standards.pdf
- Conner, A., Singletary, L. M., Smith, R. C., Wagner, P. A., & Francisco, R. T. (2014). Identifying kinds of reasoning in collective argumentation. Mathematical Thinking and Learning, 16(3), 181-200.
- Demiray, E., Isiksal-Bostan, M., & Saygi, E. (2022). Types of global argumentation structures in conjecture-generation activities regarding geometry. International J ournal of Science and Mathematics Education, 20, 839-860.
- Fosnot, C. T., & Jacob, B. (2010). Young mathematicians at work: The role of contexts and models in the emergence of proof. In D. A. Stylianou, M. L. Blanton, & E. J. Knuth (Eds.), Teaching and learning proof across the grades: A K-16 perspective (pp. 102-119). Routledge.
- Fox-Epstein, E., Katsumata, K., & Uehara, R. (2016). The convex configurations of "Sei Shonagon Chie no Ita," tangram, and other silhouette puzzles with seven pieces. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 99(6), 1084-1089.
- Hanna, G. (2020). Mathematical proof, argumentation, and reasoning. In S. Lerman (Ed.), Encyclopedia of mathematics education (pp. 561-566). Springer.
- Knipping, C. (2008). A method for revealing structures of argumentations in classroom proving processes. ZDM Mathematics Education, 40(3), 427-441.
- Krummheuer, G. (1995). The ethnography of argumentation. In P. Cobb & H. Bauersfeld (Eds.), The emergence of mathematical meaning: Interaction in classroom cultures (pp. 229-269). Lawrence Erlbaum Associates.
- Krummheuer, G. (2007). Argumentation and participation in the primary mathematics classroom: Two episodes and related theoretical abductions. The Journal of Mathematical Behavior, 26(1), 60-82.
- Lakatos, I. (2003). 수학적 발견의 논리 (우정호 역). 아르케. (Original work published 1976)
- Langer-Osuna, J. M. (2016). The social construction of authority among peers and its implications for collaborative mathematics problem solving. Mathematical Thinking and Learning, 18(2), 107-124.
- Lannin, J., Ellis, A. B., & Elliott, R. (2011). Developing essential understanding of mathematical reasoning. National Council of Teachers of Mathematics.
- Makar, K., Bakker, A., & Ben-Zvi, D. (2015). Scaffolding norms of argumentation-based inquiry in a primary mathematics classroom. ZDM Mathematics Education, 47(7), 1107-1120.
- Ministry of Education Singapore (2023). Mathematics syllabuses: Secondary One to Four. Author.
- Reuter, F. (2023). Explorative mathematical argumentation: A theoretical framework for identifying and analysing argumentation processes in early mathematics learning. Educational Studies in Mathematics, 112(3), 415-435.
- Selden, A., & Selden, J. (2003). Validations of proofs considered as texts: Can undergraduates tell whether an argument proves a theorem? Journal for Research in Mathematics Education, 34(1), 4-36.
- Stylianides, G. J., Stylianides, A. J., & Weber, K. (2017). Research on the teaching and learning of proof: Taking stock and moving forward. In J. Cai (Ed.), Compendium for research in mathematics education (pp. 237-266). National Council of Teachers of Mathematics.
- Toulmin, S. (2003). The uses of argument. Cambridge University Press. (Original work published 1958).
- Wang, F. T., & Hsiung, C. C. (1942). A theorem on the tangram. The American Mathematical Monthly, 49(9), 596-599.
- Zhuang, Y., & Conner, A. (2024). Secondary mathematics teachers' use of students' incorrect answers in supporting collective argumentation. Mathematical Thinking and Learning, 26(2), 208-231.