
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 10, Oct. 2024                       2984 
Copyright ⓒ 2024 KSII 

 
http://doi.org/10.3837/tiis.2024.10.009                                                                                                              ISSN : 1976-7277 

Efficient SVH2M for information anomaly 
detection in manufacturing processes on 

system call 
 

Chao-Hsien Hsieh1, Fengya Xu2*, Qingqing Yang2, and Dehong Kong2 
1 College of Engineering, Xi'an International University 

 Xi'an Shaanxi 710077, China 
[e-mail: george_hsieh@qq.com] 

2 School of Cyber Science and Engineering, Qufu Normal University 
Qufu Shandong 273165, China 
[e-mail: 822215180@qq.com] 

*Corresponding author: Fengya Xu 
 

Received April 25, 2024; revised July 17, 2024; accepted September 29, 2024;  
published October 31, 2024 

 

 
Abstract 

 
With the integration of the manufacturing process in the Internet, cybersecurity becomes even 
more important in the process of factory operations. Because of the complexity of data traffic 
in the manufacturing industry, the identification and classification of anomalous behavior is 
an important direction of current research. System calls are made at the operating system level. 
Therefore, the use of system call sequences can detect potential threats much earlier. So, this 
paper chooses system call information as the research object. System call orderliness is an 
ideal property for analysis of using hidden Markov model. In terms of methodology, the 
SVH2M model improves the performance and efficiency of attack detection in manufacturing 
systems. The SVH2M model combines pSVM with mHMM. The pSVM and mHMM models 
use SVMPSA and PATA. pSVM is first used to initially categorize the system call sequences 
into normal and abnormal categories. The classification of pSVM can reduce the amount of 
data. This reduces the error rate of mHMM processing. Next, mHMM is built for different 
types of known anomalies. The SVH2M model in the false positive rate is lower than that of 
hidden Markov model. The experimental results show that the AUC of the improved model is 
increased by 17%. The average Mismatch Rate is reduced by 16%. The performance and 
efficiency of detecting anomalous information are improved in manufacturing systems. 
 
 
Keywords: Hidden Markov model, support vector machine, system call, intrusion detection. 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 10, October 2024                2985 

1. Introduction 

Cyber attacks have become increasingly common over the past decade. Cyber attacks often 
make headlines on industrial companies [1]. However, intrusion detection systems (IDS) are 
used in manufacturing processes to secure various devices and networks from potential threats. 
With the popularity of industrially connected devices, cybersecurity is becoming increasingly 
important in manufacturing processes [2]. Manufacturing equipment is often connected 
through networks to achieve automation and maximize efficiency. However, this also gives 
hackers plenty of attack surface [3]. In the manufacturing process, attack surfaces can arise in 
several situations. As more manufacturing equipment are connected to the network, every 
device can be a target for hackers. Many manufacturing companies still be using outdated 
software and hardware. Intruders have accessed through unencrypted data transmissions. They 
also exploit software vulnerabilities in devices to carry out attacks. This not only threatens the 
security of manufacturing equipment, but also lead to production data leakage. Therefore, the 
use of IDS to enhance network security is essential for manufacturing processes. 

There are diverse cybersecurity threats in the manufacturing environment [4], for example, 
malware attacks, permission attacks, cloud service attacks, distributed service denial attacks, 
and so on. When managers understand the attack behavior, they can effectively fix the defects. 
There are generally two methods. First, many research papers on IDS use network traffic as 
the source of data analysis. The dataset of DARPA [5-6] was used as the basis for test 
verification. It is suitable for training the dataset of IDS. But DARPA's data takes a long time 
to collect and process. This dataset is not representative of the behavior patterns of existing 
network traffic. Second, one approach of intrusion detection is to use system calls [7-9] as the 
source of training and testing. System call sequences are recorded data sequentially over time 
[10]. Compared with the amount of real-time production information, it is easier for system 
calls to find the characteristic behavior patterns of manufacturing process. 

The hidden Markov model (HMM) is a random process with an underlying finite state 
structure. But HMM has some disadvantages such as poor classification ability and poor 
pattern recognition ability. One approach is to integrate artificial neural networks into the 
HMM architecture to improve performance. Artificial neural network can reduce the number 
of parameters. It encounters some problems such as local minimum, slow estimation process, 
and weak generalization. Support vector machine (SVM) shows its powerful classification 
performance. SVM is a general-purpose learning machine based on structural risk 
minimization (SRM). It is also a universal learning machine based on limit sample data. SVM 
has been applied in many fields such as classification, time series estimation, and function 
approximation. 

While the traditional SVM model boasts powerful classification capabilities, it performs 
poorly when dealing with nonlinear and non-Gaussian distributed data, and struggles to 
capture temporal information within the data. On the other hand, while the HMM model excels 
at processing temporal data, its modeling capabilities are limited when confronted with high-
dimensional and complex data structures. In rapidly evolving manufacturing environments, 
the demand for real-time anomaly detection is increasing. Traditional anomaly detection 
methods often fail to meet those requirements which is both leading to detection delays and 
rising false alarm rates. 

The integration of pSVM and mHMM fully leverages the strengths of both. By 
incorporating a probabilistic framework, pSVM enhances its ability to model complex data 
and partially mitigates the complexity of parameter tuning. Meanwhile, mHMM, through its 
multimodal or modified approach, reinforces its capacity to process temporal data, thereby 



2986    Chao-Hsien Hsieh et al.: Efficient SVH2M for information anomaly detection in manufacturing processes on system call 

improving detection real-time performance and accuracy. By fusing the classification 
capabilities of pSVM with the temporal modeling prowess of mHMM, our method can more 
accurately identify anomalous patterns in the manufacturing process. Thereby it significantly 
reduces false alarm rates. Compared to single models, the integrated model demonstrates 
superior efficiency when dealing with complex data. 

In this paper, the improved SVM model by the Particle Swarm Optimization algorithm is 
referred to as the pSVM for brevity. The HMM model specifically constructed for different 
types of known anomalies is referred to as the mHMM. pSVM and mHMM are combined to 
construct a SVH2M model for anomaly detection. This hybrid model can effectively improve 
the training efficiency of Markov model. At the same time, it can realize abnormal detection 
in the manufacturing process. To compare with the traditional hidden Markov model, the 
hybrid model has a lower mismatch rate. By applying this model, the performance and 
efficiency can be improved in manufacturing system. And the attack behavior can be 
accurately identified in manufacturing process. The contributions of this paper are as follows. 

1) Design a simplified architecture with the industrial DMZ in the center. This 
architecture separates IT from OT. This approach reduces the likelihood of external attackers 
gaining access to the internal network. It enhances overall network security. 

2) Develop both novel pSVM and mHMM. pSVM is an improvement of SVM with PSO 
algorithm. mHMM constructs a multiple HMM models for different types of exceptions. 

3) Combine pSVM and mHMM to create a robust framework for pattern recognition and 
classification. This combination leverages for the strength of pSVM in fast filtering to reduce 
data volume for analysis. mHMM is applied to delve into the temporal characteristics. 

This paper mainly combines pSVM and mHMM to realize information anomaly detection 
on system call. The first section mainly introduces the background of this paper. It is 
emphasized that there are cybersecurity issues in the manufacturing environment. The second 
section summarizes the related research of intrusion detection. The third section proposes the 
overall framework and algorithm. The fourth section verifies the advantages of SVH2M model 
by experiments. The fifth section is the summary of this paper and the description of the future 
research content. 

2. Related Research 

2.1 Intrusion detection system (IDS) 
Intrusion detection is an active security defense technology. It detects and prevents potential 
attacks by monitoring network traffic and system behavior in real time. Also, it protects the 
security of enterprises, individuals, and data. Intrusion detection technology is widely used in 
various fields, such as enterprise network, cloud computing, Internet of Things, etc. Table 1 
summarizes the different methods used for intrusion detection. 

SVM, as an effective classifier, has been widely used in pattern recognition and machine 
learning. By extracting the features of network traffic and using SVM to classify, the intrusion 
behavior can be accurately detected [11]. To improve the performance of SVM in intrusion 
detection, researchers have carried out optimization of the algorithm. For example, by 
combining feature selection techniques such as principal component analysis (PCA), the 
dimension of features can be reduced [12]. In addition, there are studies which combine SVM 
with other algorithms to improve detection accuracy and efficiency, such as ant colony 
optimization (ACO) [13]. Although SVM-based intrusion detection system has made some 
achievements in the research, there are still some challenges and future research directions. 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 10, October 2024                2987 

For example, there is relatively little research on mixed abuse and anomaly detection systems 
[14]. 
 

Table 1. Methods of intrusion detection 
Paper Application Field Methods Solved Problem 
[11] Internet of Things SVM Improve the intrusion detection system 
[12] Intrusion detection SVM Select the appropriate kernel function 

for the SVM 
[13] Intrusion detection SVM Analyze network traffic 
[15] Interconnected network 

physical systems 
HMM Effectively detect hidden attacking 

scenarios 
[16] Vehicle CAN bus 

network 
HMM Attack on exception 

[17] Network security HMM Detect the occurrence of multiple MSA 
Our 
work Intrusion detection pSVM 

+mHMM Improve the intrusion detection system 

 
In recent years, intrusion detection systems based on HMM have been favored for their 

advantages in processing sequence data [15]. For example, Dong et al. [16] proposed a CAN 
bus intrusion detection system based on multiple observation HMM. It is used for the security 
protection of the vehicle network. Similarly, Shawly et al. [17] used HMM to design a 
detection architecture for cyber-physical systems. The study verifies the effectiveness of 
HMM in intrusion detection. 

Intrusion detection can be divided into two main categories, misuse detection and anomaly 
detection. Misuse detection [18] is based on a set of negative behaviors. By comparing the 
database of negative behavior, it can determine an intrusion behavior. Anomaly detection [19] 
uses a positive behavior data. This paper combines the misuse detection and anomaly detection. 
The initial classification using by SVM is part for the principle of misuse detection. Timing 
analysis using by HMM is part for the principle of anomaly detection.  

2.2 Intrusion detection system using system calls 
In 1996, Forrest et al. [20-21] of the University of New Mexico adopted system call as the data 
source of IDS. The test data is compared to this positive behavior database during detection. 
When the test data does not exist in the database, an exception should be occurrence. Module 
creation is simple in this way. 

Intrusion detection systems based on machine learning have attracted much attention for 
their excellent data analysis. Especially at the system call level, researchers can detect 
abnormal behavior more effectively [22]. System calls can be considered as a characteristic 
behavior of a program. Moreover, these calls have a sequential behavior along a timeline with 
causal relationships between them. Therefore, system calls have the advantages of smaller data 
volume and more stable behavior to compare with network traffic as the data source for an 
anomaly detection system. This is beneficial for establishing a simple anomaly detection 
system. 

In a related study, Wunderlich et al. [23] compared the impact of different system call 
representation methods on intrusion detection. Rosenberg and Gudes [24] pointed out existing 
technologies that focus too much on the frequency or transformation relationships of system 
calls. Therefore, they proposed a method to improve the detection effect by using global 
information. In terms of dataset, ADFA-LD is favored for its ability to reflect the 
characteristics of modern computer systems. Xie et al. [25] applied a single-class support 



2988    Chao-Hsien Hsieh et al.: Efficient SVH2M for information anomaly detection in manufacturing processes on system call 

vector machine algorithm which was combined with a short sequence model to evaluate 
ADFA-LD. 

This paper employs a Markov model to categorize system calls into states. It then uses 
probabilistic statistics to train a finite-state machine model. The approach effectively utilizes 
the sequence and causal relationships inherent in system calls for anomaly detection. 

2.3 Symbol table 
Table 2 provides an explanation of the symbols used in this article. 
 

Table 2. Applications in each class 
Symbol Meaning 

𝑄𝑄 The set of all possible states 
𝑉𝑉 The set of all possible observations 
𝑁𝑁 The number of possible states 
𝑀𝑀 The number of possible observations 
𝑂𝑂 Corresponding observation sequence 
𝐴𝐴 State transition probability matrix 
𝐵𝐵 Observation probability matrix 
𝜋𝜋 Initial state probability vector 
𝜆𝜆 Hidden Markov model 
𝜆𝜆𝑖𝑖 The i-th HMM parameter 

𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 Each system call sequence in train dataset 
𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

ℎ𝑦𝑦  The distance of 𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 to the decision hyperplane in SVM 
𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  System call sequence in test dataset 
𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  A classification score for  𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  indicating the probability of being normal 
𝐻𝐻𝐻𝐻𝐻𝐻𝑖𝑖 , 

𝑖𝑖 = 1, 2, … The HMM parameters based on 𝜆𝜆𝑖𝑖 

𝑛𝑛𝑛𝑛𝑛𝑛particles Particle number 
dimsize  Parameter dimension 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷pre  Sample data after preprocessing 

𝑤𝑤 Inertia weight 
𝑤𝑤decay  Weight decline factor 
𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 Maximum iterations 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 po  
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑣𝑣𝑣𝑣 

Particle swarm position and velocity 

𝑓𝑓𝑓𝑓𝑓𝑓 Particle fitness (the correct classification rate of SVM) 
𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏_𝑓𝑓𝑓𝑓𝑓𝑓  [i] The individual optimum fitness value of the i-th particle 

𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏_𝑝𝑝𝑝𝑝 [i] The individual optimal position of the i-th particle (the corresponding 
parameter value) 

𝑔𝑔𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏_𝑓𝑓𝑓𝑓𝑓𝑓 Global optimal fitness value 
𝑔𝑔𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏_𝑝𝑝𝑝𝑝 Global optimal position 
𝛾𝛾𝑡𝑡(𝑖𝑖) The probability of being in state 𝑞𝑞𝑖𝑖 at time t, given model λ and observation 𝑂𝑂 

ƹ𝑡𝑡(𝑖𝑖, 𝑗𝑗) The probability of being in state 𝑞𝑞𝑖𝑖 at time t and in state 𝑞𝑞𝑖𝑖 at time t+1, given 
model λ and observation 𝑂𝑂 

 
 
 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 10, October 2024                2989 

3. System Architecture and Methodology 

3.1 System architecture 
As shown in Fig. 1, this is a simplified architecture for intrusion detection of manufacturing 
process. The architecture consists of three main components, Information Technology (IT), 
Operational technology (OT), and Industrial DMZ (Demilitarized Zone). The Industrial DMZ 
is an isolated network. 

In this architecture, the industrial DMZ plays a key role. It contains an IDS which is used 
to monitor and detect potential intrusion threats in the network. It monitors network traffic and 
abnormal behaviors in the DMZ in real time. Take appropriate measures in time to improve 
network security. In the IDS, the service data transmitted in the industrial DMZ is preprocessed 
by normalization. It provides a high-quality feature set for intrusion detection methods based 
on SVH2M model. This can optimize the detection performance and efficiency of intrusion 
detection algorithms. Then, the intrusion detection model is constructed by SVH2M model. 
The machine learning method is applied to the intrusion detection of industrial Internet. It 
makes IDS more intelligent and efficient. 

IT and OT represent the fields of information technology and operational technology, 
respectively. Information technology covers the internal computer networks and systems of 
enterprises, including office networks, data centers, etc. For example, IT is used in 
manufacturing industry for production planning management, inventory management, supply 
chain management, and so on. Operational technology relates to industrial control systems 
(ICS) and automation equipment in the manufacturing industry. For example, OT in the 
manufacturing industry is mainly used for the control of the production process and the 
monitoring of equipment. This architecture is designed to isolate the IT and OT domains.  

In summary, this simplified architecture is centered around the industrial DMZ which 
places for the IDS. This provides cybersecurity protection for the manufacturing industry. 
Through reasonable network isolation and security measurement, network security can be 
improved in manufacturing. It can ensure the confidentiality of sensitive data of production 
system. 
 

 
Fig. 1. Simplified architecture for intrusion detection of manufacturing process. 



2990    Chao-Hsien Hsieh et al.: Efficient SVH2M for information anomaly detection in manufacturing processes on system call 

3.2 SVH2M of Advanced IDS 
This part mainly explains the architecture for SVH2M of Advanced IDS as shown in Fig. 2. 

System call sequence. Each program in the operating system has its own unique sequence 
of system calls. SVH2M will use these feature sequences to collect the sequence of system 
calls for different programs in use. They are compared to real-time tracking in the system log. 
This way can train the model to recognize normal and abnormal patterns in each program.  

Data preprocessing. The TF-IDF values of n-gram entries are used to extract system call 
features. The generated data set is saved as a csv file. The truncated SVD is used to reduce the 
dimensionality of csv files. 

SVH2M. After dimensionality reduction, SVH2M model is used to construct a 
classification model. The architecture is divided into two main stages, the preliminary 
classification in stage 1 and the timing analysis in stage 2. 

In stage 1, pSVM training is the system first to classify the data series. This step mainly 
depends on the Support Vector Machine based on Particle Swarm Algorithm (SVMPSA). 

Feature extraction. First, the system extracts feature which is suitable for SVM. These 
features include statistics-based features such as frequency, distribution, etc. These features 
can reflect patterns and regularities in the data series. This can provide a basis for the 
subsequent classification. 
 

 
Fig. 2. SVH2M of advanced IDS. 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 10, October 2024                2991 

pSVM classification. The trained pSVM model is used to classify the extracted features. 
SVMPSA is a powerful supervised learning algorithm. It can roughly classify data as "normal" 
and "abnormal" characteristics. At this stage, the goal of the pSVM is to roughly classify the 
data to provide a basis for subsequent time series analysis. Because of the stage 1, the results 
of pSVM classification are further analyzed in the time sequence analysis stage. 

In stage 2, mHMM training can describe the relationship between time points in a sequence. 
Especially for sequences labeled as exceptions, mHMM can better describe their temporal 
properties. This step mainly depends on the Prediction Anomaly Type Algorithm (PATA). 

Baum-Welch algorithm. This algorithm is used to calculate HMM parameters. It is an 
iterative algorithm which is used to estimate HMM parameters including state transition 
probability and observation probability. By adjusting these parameters, HMM can better fit 
the time characteristics of the abnormal sequence. 

Forward algorithm. This algorithm is used to calculate the likelihood of a given observation 
sequence. It observes the probability of a particular sequence. It is used to evaluate the 
significance of abnormal sequences.  

In general, the pSVM is first used for preliminary classification of new production process 
data. For sequences classified as exceptions, further timing analysis is performed to use 
mHMM to identify the exception type. This is an effective two-stage approach. It is suitable 
for complex system call sequence analysis and exception detection. After these two phases, 
the system can be more accurately detect anomalies and identify their type. 

Output result. This module is responsible for displaying the results of SVH2M module 
analysis. Thus, it helps users get the required information quickly and accurately. 

In addressing the challenge of massive and complex data generated by large-scale 
manufacturing systems, the SVH2M model demonstrates scalability across different 
manufacturing system sizes through its innovative data processing mechanisms, flexible 
parameter adjustment strategies, and the integration of distributed and parallel processing 
technologies. 

The SVH2M model, by integrating pSVM and mHMM, leverages pSVM for initial 
classification to reduce data volume, facilitating subsequent mHMM processing. This data 
preprocessing mechanism enables the model to more effectively manage data and reduce 
computational burden when dealing with large-scale manufacturing systems. As system size 
increases, although data volume significantly grows, the preliminary screening effect of pSVM 
becomes more crucial in maintaining the overall model performance. Both pSVM and mHMM 
in the SVH2M model contain adjustable parameters that can be tuned according to the actual 
size of the manufacturing system. For instance, in large-scale systems, increasing the 
complexity of pSVM may enhance classification accuracy, or adjusting the number of states 
and transition probabilities in mHMM can better capture subtle changes in system call 
sequences. This flexibility allows the model to adapt to systems of varying sizes. To further 
enhance the scalability of the SVH2M model in large-scale manufacturing systems, distributed 
and parallel processing techniques can be employed. By segmenting the dataset into subsets 
and running pSVM and mHMM in parallel across multiple computing nodes, this can 
significantly reduce processing time. 

In complex network environments, system call sequences may be influenced by various 
external factors such as network latency and packet loss. The SVH2M model can partially 
mitigate these external disturbances by extracting deep features from system call sequences 
and leveraging the sequence modeling capabilities of mHMM, can partially mitigate these 
external disturbances. To address the ever-changing network environment, the SVH2M model 
needs to possess dynamic adaptability. This can be achieved through online learning or 



2992    Chao-Hsien Hsieh et al.: Efficient SVH2M for information anomaly detection in manufacturing processes on system call 

incremental learning approaches. This allows the model to update its parameters and structure 
in real time. Thus it adapts to new network environment and attack mode. By continuously 
absorbing new data samples and adjusting model parameters, the SVH2M model can maintain 
its effectiveness in complex network environments. In highly complex network environments, 
different manufacturing systems may have close interactions and dependencies. To improve 
the overall performance of the SVH2M model, cross-domain and cross-system collaborative 
detection can be considered. By sharing anomaly information and detection results, different 
systems can collaborate to enhance the identification capability of potential threats. 

In summary, the SVH2M model demonstrates good scalability across different 
manufacturing system sizes and network complexities. By optimizing data processing 
mechanisms, adjusting model parameters, adopting distributed and parallel processing 
techniques, and implementing dynamic adaptability and cross-domain collaborative detection, 
the model's performance and efficiency in complex manufacturing environments can be 
further improved. 

3.3 pSVM classification 
SVM is a powerful classification tool. It is good at processing high-dimensional data. The 
sequence of system calls is usually high dimensional. SVM can effectively identify abnormal 
patterns in these data. The pre-classification of SVM can reduce the amount of data. An initial 
SVM classification can help rule out obviously normal or abnormal cases. This reduces the 
error rate of HMM processing. SVM focuses on static feature classification. Also, HMM 
focuses on the time dependence of serial data. This combination provides a more 
comprehensive perspective on categorizing anomalies. 

SVM makes predictions by finding a hyperplane that maximizes the edge between two 
classes. In the case of linear non-divisible, it seeks the best possible dividing plane in a space 
with more dimensions. To do this, it introduces certain variables known as relaxation variables. 
These variables help in managing instances that are hard to separate. Additionally, it uses a 
technique of nonlinear mapping. This mapping transforms the original and simple data into a 
more complex space. In this complex space, it becomes easier to separate the data. Its main 
principle is shown in (1) of convex quadratic programming problem. 

⎩
⎪
⎨

⎪
⎧ min

𝑎𝑎

1
2
��𝛼𝛼𝑖𝑖𝛼𝛼𝑗𝑗𝑦𝑦𝑖𝑖𝑦𝑦𝑗𝑗𝐾𝐾�𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗� −�𝛼𝛼𝑖𝑖

𝑁𝑁

𝑖𝑖=1

𝑁𝑁

𝑗𝑗=1

𝑁𝑁

𝑖𝑖=1

𝑠𝑠. 𝑡𝑡.�𝛼𝛼𝑖𝑖

𝑁𝑁

𝑖𝑖=1

𝑦𝑦𝑖𝑖 = 0, 0 ≤ 𝛼𝛼𝑖𝑖 ≤ 𝐶𝐶, 𝑖𝑖 = 1,2, … ,𝑁𝑁

(1) 

𝛼𝛼𝑖𝑖  and 𝛼𝛼𝑗𝑗  are Lagrange factors of the i and j samples respectively. C is the penalty 
parameter. x and y are vector values of samples and classes. 𝐾𝐾�𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗� is the kernel function. 
The optimal solution 𝛼𝛼∗ is obtained from (1). The displacement term 𝑏𝑏∗ is further obtained 
from (2).  

𝑏𝑏∗ = 𝑦𝑦𝑗𝑗 −�𝛼𝛼𝑖𝑖∗𝑦𝑦𝑖𝑖𝐾𝐾�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗�
𝑁𝑁

𝑗𝑗=1

(2) 

Support vector machine adopts Gaussian kernel function. Its classification decision 
function is shown in (3). 

𝑓𝑓(𝑥𝑥) = 𝑠𝑠𝑖𝑖𝑔𝑔𝑔𝑔 ��𝛼𝛼𝑖𝑖∗𝑦𝑦𝑖𝑖 exp�−
‖𝑥𝑥𝑖𝑖 − 𝑥𝑥‖2

2𝜎𝜎2 � + 𝑏𝑏∗
𝑁𝑁

𝑖𝑖=1
� (3) 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 10, October 2024                2993 

As a factor affecting the performance of intrusion detection models, model parameter 
optimization plays a crucial role in the process of model training. In the process of solving the 
support vector, a penalty factor C is introduced to deal with the deviation of individual data 
samples. In addition, the parameter 𝜎𝜎 of the kernel function also plays an important role. 
Particle Swarm Optimization (PSO) is an intelligent optimization algorithm based on 
population. It is especially suitable for searching the optimal parameters of a model in a 
specified space. In PSO, each particle represents a potential solution. Its position and velocity 
are continuously updated during the iterative process. The position of these particles represents 
the combination of values for C and σ. Through continuous search and optimization, it strives 
to find the best combination of parameters. In each iteration, each particle updates its velocity 
and position based on its individual best position (𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) and the group best position (𝑔𝑔𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏). 
In this way, the entire particle swarm gradually converges towards the optimal solution. And 
it eventually finds the optimal parameter combination for the model. The mathematical 
expression is as shown in (4) and (5). 

𝑣𝑣𝑖𝑖𝑘𝑘+1 = 𝑤𝑤𝑣𝑣𝑖𝑖𝑘𝑘 + 𝐶𝐶1𝑅𝑅1�𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑥𝑥𝑖𝑖𝑘𝑘� + 𝐶𝐶2𝑅𝑅2�𝑔𝑔𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑥𝑥𝑖𝑖𝑘𝑘� (4) 
𝑥𝑥𝑖𝑖𝑘𝑘+1 = 𝑥𝑥𝑖𝑖𝑘𝑘 + 𝑣𝑣𝑖𝑖𝑘𝑘+1 (5) 

Where 𝑤𝑤 is the position weight, 𝐶𝐶1 and  𝐶𝐶2 are acceleration factors, 𝑅𝑅1 and  𝑅𝑅2 are random 
numbers uniformly distributed over the interval [1,0].  𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 is the individual optimal position. 
And 𝑔𝑔𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 is the group optimal position. 𝑣𝑣𝑖𝑖𝑘𝑘and𝑥𝑥𝑖𝑖𝑘𝑘 are the velocities and positions of the i-th 
particle at the k iteration. 

3.3.1 Implementation process 
In the training phase, the process begins with initialization. Then, system call sequence gathers 
samples which include both normal and abnormal behaviors in the system. Next, the process 
performs feature extraction and evaluation. N-gram items and TF-IDF values are used to 
transform the raw data. This transformation makes the data suitable for machine learning. The 
most relevant features are then evaluated and selected. Subsequently, these features are used 
to train the pSVM multi-classifier. An appropriate kernel function is chosen based on (3). 

After reading the pre-processed sample data, the position and velocity of the particle swarm 
are initialization. And the initial position and velocity of the particle are generated randomly. 
The optimal position of all particles is taken as the penalty constant C and the kernel function 
parameter σ. And then, the decreasing rule of the inertia weight 𝑤𝑤  is set. The maximum 
iteration number 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 of the particle swarm is set. In this method, the corresponding fitness 
of particles is the correct classification rate of SVM through cross-verification. The individual 
extremum and population extremum are subsequently updated. Based on the population 
extremum, the speed and position of each particle are adjusted. As following this situation, a 
check is made to see if the algorithm has attained the maximum number of iterations; if not, 
the process returns to the previous step for further iteration. The best parameters are selected 
by comparing the population extremum from each iteration. Finally, these optimal parameters 
are substituted into the support vector machine.   

The pSVM is trained to distinguish between normal and various types of abnormal 
behaviors. Once training is complete, then store into the pSVM. It is placed in a model 
repository. This repository is for quick future deployment or further refinement. At the end of 
the training phase, the pSVM model classifies the training data. It classifies them as normal or 
abnormal. 

The testing phase starts with the initialization process. Unknown system call sequence 
gathers test samples which are used to evaluate the model's performance on new data. Feature 
extraction is then performed on these test samples. This extraction maintains consistency with 



2994    Chao-Hsien Hsieh et al.: Efficient SVH2M for information anomaly detection in manufacturing processes on system call 

the training phase. The extracted features are input into the trained pSVM. The model then 
classifies each test sample as normal or abnormal. The classification results evaluate the 
accuracy and validity of the model. Common metrics include precision, recall, and F1-score. 
This approach is depicted in Fig. 3. 

 
Fig. 3. pSVM training process diagram. 

 

3.3.2 Support Vector Machine based on Particle Swarm Algorithm (SVMPSA) 
Fig. 3 introduces the method to retrieve a set of abnormal state sequences using SVMPSA. 
First, the initial pSVM is established through the initial particle swarm location. And the model 
accuracy is verified by cross-validation method with the training set data. The model accuracy 
is returned as the fitness of the particle swarm. The velocity and position of the particle swarm 
are updated to find the optimal parameters. And it establishes the optimal SVM detection 
model.  

Next, the pSVM is trained to use the input set of system call sequences (denoted as S). For 
each sequence in S, the pSVM assigns a class label, either "normal" or "abnormal". The pSVM 
calculates a classification score for each sequence in the set S', indicating the probability of 
the sequence belonging to the normal category. If the classification score of a sequence in S' 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 10, October 2024                2995 

is higher than the testing threshold V, it is labeled as abnormal. Otherwise, it is labeled as 
normal. 
 

Algorithm 1: Support Vector Machine based on Particle Swarm Algorithm (SVMPSA) 
Input: Set of system call sequences S, Testing threshold V 
Output: Classification of each sequence in S as normal or anomalous 
1：Initialization parameters 𝑛𝑛𝑛𝑛𝑛𝑛particles , 𝑤𝑤decay , 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 
2：Initializes 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 po  and 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ve  
3：Building pSVM 
4：for t in range (𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚) do 
5：    for i in range (𝑛𝑛𝑛𝑛𝑛𝑛particles) do 
6：        Calculate 𝑓𝑓𝑓𝑓𝑓𝑓   
7:         if fit > 𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏_𝑓𝑓𝑓𝑓𝑓𝑓 [i] then 
8:                 Update their individual optimal position𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏_𝑝𝑝𝑝𝑝 
9:                 Update their individual optimal fitness𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏_𝑓𝑓𝑓𝑓𝑓𝑓  
10:         if max(𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏_𝑓𝑓𝑓𝑓𝑓𝑓) > 𝑔𝑔𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏_𝑓𝑓𝑓𝑓𝑓𝑓 then  
11:               Update global optimal position 𝑔𝑔𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏_𝑝𝑝𝑝𝑝 
12:               Update global optimal fitness 𝑔𝑔𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏_𝑓𝑓𝑓𝑓𝑓𝑓 
13:         Update 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 po  using formula (4) 
14:         Update 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ve using formula (5) 
15:         if t ==𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 – 1 then 
16:                break   
17:     end for 
18:     if t ==𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 – 1 then 
19:          break   
20:  end for 
21:  Decreasing inertia weight  𝑤𝑤decay  
22:  Update the pSVM 
23:  for 𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 in S do 
24：     Compute 𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

ℎ𝑦𝑦  
25：      Assign a label to 𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 
26：  end for 
27：for 𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  do 
28：    Compute 𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 for 𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
29：    if 𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  < V then 
30：        Flag 𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 as anomalous 
31：    else 
32：        Flag 𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡as normal 
33：    end if 
34：end for 

 

3.4 mHMM classification 
HMM models are good at recognizing patterns in time series data. It uses these patterns to 
predict the future direction of the data. When analyzing a sequence of system calls, the 
occurrence of an event may depend on previous events. HMM is good at understanding these 
kinds of dependencies. SVM focuses on the location of data points in space. It's not so focused 



2996    Chao-Hsien Hsieh et al.: Efficient SVH2M for information anomaly detection in manufacturing processes on system call 

on how those points change over time. HMM complements the analysis by focusing on 
changes in time series.  

The HMM is determined by the initial probability distribution, the state transition 
probability distribution, and the observed probability distribution. HMM is defined as follows. 

𝑄𝑄 =  �𝑞𝑞1, 𝑞𝑞2, … , 𝑞𝑞𝑁𝑁� (6) 
  𝑉𝑉 =  {𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑀𝑀} (7) 

As shown in (6) and (7), N is the number of possible states. M is the number of possible 
observations. As shown in (8) and (9), I is a sequence of states of length T. O is the 
corresponding observation sequence. 

𝐼𝐼 =  {𝑖𝑖1, 𝑖𝑖2, … , 𝑖𝑖𝑇𝑇} (8) 
  𝑂𝑂 =  {𝑜𝑜1, 𝑜𝑜2, … , 𝑜𝑜𝑇𝑇} (9) 

A is the state transition probability matrix, as shown in (10) and (11). 
𝐴𝐴 = �𝑎𝑎𝑖𝑖𝑖𝑖�𝑁𝑁∗𝑁𝑁 (10) 

𝑎𝑎𝑖𝑖𝑖𝑖 = 𝑃𝑃 �𝑖𝑖𝑡𝑡+1 =  𝑞𝑞𝑗𝑗�𝑖𝑖𝑡𝑡 = 𝑞𝑞𝑖𝑖� , 𝑖𝑖 = 1,2, … ,𝑁𝑁; 𝑗𝑗 = 1,2, … ,𝑁𝑁 (11) 
𝑎𝑎𝑖𝑖𝑖𝑖  is the probability of transitioning to state 𝑞𝑞𝑗𝑗 at time t+1 with state 𝑞𝑞𝑖𝑖 at time t. As shown 

in (12) and (13), B is the observation probability matrix. 
𝐵𝐵 = �𝑏𝑏𝑗𝑗(𝑘𝑘)�

𝑁𝑁∗𝑀𝑀
(12) 

𝑏𝑏𝑗𝑗(𝑘𝑘) = 𝑃𝑃 �𝑜𝑜𝑡𝑡 =  𝑣𝑣𝑘𝑘�𝑖𝑖𝑡𝑡 = 𝑞𝑞𝑗𝑗� , 𝑘𝑘 = 1,2, … ,𝑀𝑀; 𝑗𝑗 = 1,2, … ,𝑁𝑁 (13) 
𝑏𝑏𝑗𝑗(𝑘𝑘) is the probability of generating observed 𝑣𝑣𝑘𝑘  at time t in state 𝑞𝑞𝑗𝑗. As shown in (14) 

and (15),  π is the initial state probability vector. 
𝜋𝜋 = (𝜋𝜋𝑖𝑖) (14) 

𝜋𝜋𝑖𝑖 = 𝑃𝑃(𝑖𝑖1 = 𝑞𝑞𝑖𝑖), 𝑖𝑖 = 1, 2, … ,𝑁𝑁 (15) 
π𝑖𝑖  is the probability of being in state 𝑞𝑞𝑖𝑖  at time t=1. The hidden Markov model is 

determined by the initial state probability vector π, the state transition matrix A, and the 
observation probability matrix B. Thus, the hidden Markov model λ can be represented by a 
ternary symbol, as shown in (16). 

𝜆𝜆 = (𝐴𝐴,𝐵𝐵,𝜋𝜋) (16) 

3.4.1 Implementation process 
As pSVM training, it has initially classified system call sequences as normal or abnormal. 
There is now a batch of sequences marked as abnormal. The aim is to determine the specific 
type and possible cause of the abnormalities. First, mHMM models are built for different types 
of known abnormalities, as shown in Fig. 4. For example, one model might represent 
sequences abnormal due to sensor faults. Another model might represent abnormalities caused 
by network delays. For each sequence marked as abnormal by pSVM, the mHMM is used to 
analyze its features. The final classification results are determined according to the majority 
voting principle. Based on the probability of the sequence under each HMM, it can determine 
the most likely type of abnormality for the sequence. This approach is depicted in Fig. 4. 

Use sequences marked as abnormal by pSVM to train the mHMM. The abnormal system 
call sequences serve as observation sequences. HMM models sequential dependencies in the 
training data. The HMM is trained with the observation sequence O =  {𝑜𝑜1,𝑜𝑜2, … , 𝑜𝑜𝑇𝑇}. First, 
initialize the HMM parameters λ = (A, B,π). Then, use the Baum-Welch algorithm to re-
estimate the HMM parameters. The Baum-Welch algorithm includes the following three steps. 

Step 1. Define forward probabilities. Define the partial observation sequence up to time 
t as 𝑜𝑜1,𝑜𝑜2, … , 𝑜𝑜𝑡𝑡. And the probability of being in state 𝑞𝑞𝑖𝑖 at time t as the forward probability, 
denoted as in (17). The forward probability  𝛼𝛼𝑡𝑡(𝑖𝑖) and the probability of observation sequence 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 10, October 2024                2997 

P (O|λ) can be recursively calculated through several inductive steps, as shown in (18), (19), 
and (20). 

𝛼𝛼𝑡𝑡(𝑖𝑖) = 𝑃𝑃(𝑜𝑜1, 𝑜𝑜2, … , 𝑜𝑜𝑡𝑡 , 𝑖𝑖𝑡𝑡 = 𝑞𝑞𝑖𝑖|𝜆𝜆) (17) 
a) Initialization. 

𝛼𝛼1(𝑖𝑖) = 𝜋𝜋𝑖𝑖𝑏𝑏𝑖𝑖(𝑜𝑜1), 𝑖𝑖 = 1,2, … ,𝑁𝑁 (18) 
b) Recursion. 

𝛼𝛼𝑡𝑡+1(𝑖𝑖) = ��𝛼𝛼𝑡𝑡(𝑗𝑗)𝑎𝑎𝑗𝑗𝑗𝑗

𝑁𝑁

𝑗𝑗=1

� 𝑏𝑏𝑖𝑖(𝑜𝑜𝑡𝑡+1),

 𝑖𝑖 = 1,2, … ,𝑁𝑁. 𝑡𝑡 = 1,2, … ,𝑇𝑇 − 1. (19)

 

c) Termination. 

𝑃𝑃 (𝑂𝑂|𝜆𝜆) = �𝛼𝛼𝑇𝑇(𝑖𝑖)
𝑁𝑁

𝑖𝑖=1

(20) 

 

 
Fig. 4. mHMM training process diagram. 

 
Step 2. Define backward probabilities. Define the probability of the partial observation 

sequence from t+1 to T. Given the condition that the state at time t is 𝑞𝑞𝑖𝑖. This probability is 
known as the backward probability, denoted as in (21). 

𝛽𝛽𝑡𝑡(𝑖𝑖) = 𝑃𝑃(𝑜𝑜𝑡𝑡+1, 𝑜𝑜𝑡𝑡+2, … , 𝑜𝑜𝑇𝑇 , 𝑖𝑖𝑡𝑡 = 𝑞𝑞𝑖𝑖|𝜆𝜆) (21) 



2998    Chao-Hsien Hsieh et al.: Efficient SVH2M for information anomaly detection in manufacturing processes on system call 

The backward probability 𝛽𝛽𝑡𝑡(𝑖𝑖) and the observed sequence probability P (O|λ) can be 
retrieved by recursion method. The calculation can be summarized by the following three steps, 
as shown in (22), (23), and (24).  

a) Initialization. 
𝛽𝛽𝑡𝑡(𝑖𝑖) = 1, 𝑖𝑖 = 1,2, … ,𝑁𝑁 (22) 

b) For t=T-1, T-2, …,1  

𝛽𝛽𝑡𝑡(𝑖𝑖) = �𝑎𝑎𝑖𝑖𝑖𝑖

𝑁𝑁

𝑗𝑗=1

𝑏𝑏𝑗𝑗(𝑜𝑜𝑡𝑡+1)𝛽𝛽𝑡𝑡+1(𝑗𝑗), 𝑖𝑖 = 1,2, … ,𝑁𝑁 (23) 

c) Calculate P (O|λ). 

𝑃𝑃 (𝑂𝑂|𝜆𝜆) = �𝜋𝜋𝑖𝑖𝑏𝑏𝑖𝑖(𝑜𝑜1)𝛽𝛽1(𝑖𝑖)
𝑁𝑁

𝑖𝑖=1

(24) 

Step 3. Calculate 𝝀𝝀 parameter. Specifically, the probability variables 𝛾𝛾𝑡𝑡(𝑖𝑖) and  ƹ𝑡𝑡(𝑖𝑖, 𝑗𝑗) 
can be calculated based on the variables α and β, as shown in the (25) and (26). 

𝛾𝛾𝑡𝑡(𝑖𝑖) = 𝑃𝑃�𝑂𝑂, 𝑖𝑖𝑡𝑡 = 𝑞𝑞𝑖𝑖�𝑂𝑂, 𝜆𝜆� =
𝛼𝛼𝑡𝑡(𝑖𝑖)𝛽𝛽𝑡𝑡(𝑖𝑖)

∑ 𝛼𝛼𝑡𝑡(𝑗𝑗)𝛽𝛽𝑡𝑡(𝑗𝑗)
𝑁𝑁
𝑗𝑗=1

(25) 

ƹ𝑡𝑡(𝑖𝑖, 𝑗𝑗) = 𝑃𝑃�𝑖𝑖𝑡𝑡 = 𝑞𝑞𝑖𝑖 , 𝑖𝑖𝑡𝑡+1 = 𝑞𝑞𝑗𝑗�𝑂𝑂, 𝜆𝜆�

=
𝛼𝛼𝑡𝑡(𝑖𝑖)𝑎𝑎𝑖𝑖𝑖𝑖𝑏𝑏𝑗𝑗(𝑜𝑜𝑡𝑡+1)𝛽𝛽𝑡𝑡+1(𝑗𝑗)

∑ ∑ 𝛼𝛼𝑡𝑡(𝑖𝑖)𝑎𝑎𝑖𝑖𝑖𝑖𝑏𝑏𝑗𝑗(𝑜𝑜𝑡𝑡+1)𝛽𝛽𝑡𝑡+1(𝑗𝑗)𝑁𝑁
𝑗𝑗=1

𝑁𝑁
𝑖𝑖=1

(26)
 

The variables γ and ɛ in the formula for estimating the HMM parameters are followed by 
three steps, as shown in the (27), (28), (29), and (30). 

a) Initialization. For n=0, model λ(0) = (𝐴𝐴(0),𝐵𝐵(0),𝜋𝜋(0)) 
b) Recursion. For n=1,2, …, 

𝑎𝑎𝑖𝑖𝑖𝑖
(𝑛𝑛+1) =

∑ ƹ𝑡𝑡(𝑖𝑖, 𝑗𝑗)
𝑇𝑇−1
𝑡𝑡=1

∑ 𝛾𝛾𝑡𝑡(𝑖𝑖)
𝑇𝑇−1
𝑡𝑡=1

(27) 

𝑏𝑏𝑗𝑗(𝑘𝑘)(𝑛𝑛+1) =
∑ 𝛾𝛾𝑡𝑡(𝑗𝑗)
𝑇𝑇
𝑡𝑡=1,𝑜𝑜𝑡𝑡=𝑣𝑣𝑘𝑘

∑ 𝛾𝛾𝑡𝑡(𝑗𝑗)
𝑇𝑇
𝑡𝑡=1

(28) 

𝜋𝜋𝑖𝑖
(𝑛𝑛+1) = 𝛾𝛾1(𝑖𝑖) (29) 

c) Termination. 
𝜆𝜆(𝑛𝑛+1) = �𝐴𝐴(𝑛𝑛+1),𝐵𝐵(𝑛𝑛+1),𝜋𝜋(𝑛𝑛+1)� (30) 

 

3.4.2 Prediction Anomaly Type Algorithm (PATA) 
The algorithm 2 for classifying abnormal state sequences is described as follows. It first uses 
the Baum-Welch algorithm to train the mHMM parameters including A, B, and π. And it trains 
multiple HMM models for different types of known anomalies. For each sequence labeled as 
abnormal by the pSVM, the trained mHMM is used to analyze its features. This usually 
involves calculating the probability of the sequence under each model. Based on the 
probability of the sequence under each HMM, the most likely type of abnormality 
corresponding to the sequence is determined. For example, as a sequence has a higher 
probability under a specific type of HMM, it can be inferred that the anomaly may belong to 
that type. The Viterbi algorithm is used to generate each hidden state sequence. The sequence 
determines the attacking type which it belongs to. Each HMM classifies the input sequence of 
system calls. And each HMM outputs a classification result. In accordance with majority 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 10, October 2024                2999 

voting, this will count the votes of each category to obtain the final classification. 
 

Algorithm 2: Prediction Anomaly Type Algorithm (PATA) 
Input: Set of system call sequences S, labeled as abnormal by SVM 
Output: Classification of each sequence in S with specific type of anomaly 
 
1：Initialize λ = {π, A, B} with small random values   
2：while λ is not convergence do  
3：   Train the 𝐻𝐻𝐻𝐻𝐻𝐻1 and S using Baum-Welch algorithm 
4：   Train the 𝐻𝐻𝐻𝐻𝐻𝐻2 and S using Baum-Welch algorithm 
5：   Train the 𝐻𝐻𝐻𝐻𝐻𝐻3 and S using Baum-Welch algorithm 
6： end while  
7： for 𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 in S do   
8：    Compute the likelihood P(Q|λ)  
9：  end for   
10：For 𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 in S do 
11：  If P(Q|λ1) > P(Q|λ2)    
12：      Label sequence as " Abnormal 1" 
13：  else P(Q|λ1) < P(Q|λ2)   
14：      Label sequence as " Abnormal 2"   
15：  else   
16：      Label sequence as "Unknown Anomaly"  
17：end for  
18：Statistical classification result 
19：Output results according to voting principles 

4. Experiment 

4.1 Experimental setup and dataset 
The experimental software is carried out on Windows10 operating system. The hardware 
environment uses a 12th Gen Intel(R) Core (TM) i9-12900KF 3.19GHz CPU and a NVIDIA 
GeForce RTX 3080Ti GPU with 12G memory. The ADFA-LD dataset [26] and MAWI dataset 
[27] were used in this experiment.  

In a system call-based intrusion detection system, the detected anomaly types are typically 
related to deviations from the system call sequences generated by programs during normal 
execution. These anomalies may include but are not limited to the following types: 

Unusual System Call Sequences: When a program executes system call sequences that 
deviate from its normal behavior, it may indicate an anomaly. For example, if a program 
typically does not perform write operations to sensitive files (such as system configuration 
files), but such operations are recorded in the system logs, it is likely a sign of intrusion. 

Abnormal System Call Frequencies: Even if the system call sequences themselves appear 
normal, a sudden increase or decrease in the frequency of certain calls may also indicate an 
anomaly. For instance, excessive read or write operations could signify data leakage or an 
attempt by malware to steal or modify data. 

Unexpected Parameter Values: Certain system calls require specific parameter values, and 
if these values exceed normal ranges or expectations, they may also signify an anomaly. For 
example, a network program suddenly attempting to connect to an illegal or unknown IP 



3000    Chao-Hsien Hsieh et al.: Efficient SVH2M for information anomaly detection in manufacturing processes on system call 

address. 
Chained Anomalies: A series of system calls that individually seem normal but, when 

combined, constitute anomalous behavior. These actions may appear harmless in isolation but, 
when taken together, may reveal malicious activity. 

In operating systems, each program possesses a distinctive system call signature sequence 
that uniquely differentiates it from other programs.  These sequences serve as the program's 
fingerprint, allowing for its identification amidst the myriad of processes running concurrently.  
To harness this distinguishing feature, we will embark on a process that involves capturing the 
system call sequences generated by various programs during their normal usage periods.  
These collected sequences will then serve as the benchmark for what constitutes normal 
behavior for each program. By leveraging these established signatures, we will train a model 
that meticulously compares the real-time traces extracted from system logs against the pre-
recorded normal patterns.  This comparison process is designed to empower the model with 
the capability to discern the normal operational mode of each program, effectively 
distinguishing it from any anomalous behavior that may arise. Our model differentiates 
between the aforementioned anomaly types through the following approaches: 

Feature Extraction: First, the system call sequences are converted into 6-ngram sequences, 
enhancing data richness and enabling the model to learn more complex patterns. Each 6-ngram 
serves as a feature, representing specific relationships and orders between system calls. 

Pattern Recognition: During training, the model learns patterns of normal and anomalous 
behavior. By comparing 6-ngram sequences from real-time system logs with learned patterns, 
the model can identify sequences that deviate from normal patterns, i.e., anomalous sequences. 

Classification and Threshold Setting: The model employs machine learning algorithms to 
classify input system call sequences as normal or anomalous. Additionally, thresholds are 
adjusted to control the model's sensitivity and specificity, minimizing false positives and false 
negatives. 

Anomaly Pattern Description: For detected anomalies, the model can generate descriptions 
of anomaly patterns by analyzing common features within the anomalous sequences. For 
instance, if multiple anomalies involve write operations to sensitive files, the model can infer 
a specific anomaly pattern and issue corresponding warnings. 

4.2 Experimental setup and dataset 
In this paper, confusion matrix, accuracy, precision, recall rate, false positive rate, specificity, 
and mismatch rate are used to evaluate the performance of the classification model. 

Confusion matrix. The confusion matrix is a table. It displays the relationship between the 
predictions and actual labels. It divides the predictions into four different categories. These 
categories are True Positive (TP), True Negative (TN), False Positive (FP), and False Negative 
(FN). 

Accuracy. It is the ratio of the number of correctly classified samples to the total number 
of samples, as shown in (31). It measures the overall classification accuracy of a model for all 
samples. The higher the accuracy, the better the performance of the model. 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹 + 𝑇𝑇𝑇𝑇
(31) 

Precision. It represents the proportion of prediction accuracy among all the positives 
predicted by the model, as shown in (32). Also, it represents the percentage of predicted 
positive situations. 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
(32) 

 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 10, October 2024                3001 

Recall. It represents the positive proportion of all true positives that the prediction model 
is correction, as shown in (33). It is used to measure the number of predicted positive situations 
for rightness of actual value and predicted value. Generally, this formula of recall is the same 
as the formula of sensitive. 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
(33) 

Specificity. It refers to a specific negative proportion of all true negatives that the model 
was correct, as in (34). It is mainly used in the recognition ability of the model to the negative 
example. 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
(34) 

Mismatch Rate. The proportion of sequences in the test set that are incorrectly identified 
as anomalies by a trained model, as in (35). 

𝑀𝑀𝑀𝑀 =
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

 (35) 

4.3 Experimental results and analysis 

4.3.1 System call sequence analysis 
Fig. 5 shows a stacked bar chart. It is used to compare the frequency of system calls between 
normal data and intrusion data. The blue bar chart shows the distribution of system calls under 
normal conditions. The red bar chart shows the distribution of system calls in the case of 
intrusion. They are used to show the proportion of system call numbers. In this diagram, the 
Y-axis is labeled "Proportions". It represents the relative frequency of different system calls. 
The X-axis is labeled "Syscall num". It represents a different system call number. With this 
visualization, it can clearly show the difference in system call frequency between normal and 
intrusion data. 
 

 
Fig. 5. Stacked bar chart of the proportion of system calls in normal data and intrusion data. 

 

4.3.2 Comparison of classification models 
This paper uses four different machine learning methods to build the model. Specific methods 
include K-means, Logistic Regression, Neural Network, and SVH2M.  

 



3002    Chao-Hsien Hsieh et al.: Efficient SVH2M for information anomaly detection in manufacturing processes on system call 

Fig. 6 shows the confusion matrix generated by four machine learning methods. It 
represents a summary of the predicted results of the classification problem. It summarizes the 
predicted quantities of normal and attack sequences using count values. Additionally, it 
provides analysis of the predictions for each category. The upper left corner of the picture is 
TP, the upper right corner is FP, the lower left corner is FN, and the lower corner is TN. In 
Fig. 6 (a), (b), (c), and (d), the number of normal sequences that can be correctly identified is 
830, 1286, 1082, and 1710, respectively. Also, the number of attack sequences that can be 
correctly identified is 753, 1305, and 1457. For the K-means model in Fig. 6 (a), most normal 
sequences are correctly identified as normal, but a portion of attack sequences are misclassified 
as normal. For the Logistic Regression model in Fig. 6 (b), both normal and attack sequences 
are recognized with relatively high accuracy compared to the models shown in Fig. 6 (a), Fig. 
6 (c), and Fig. 6 (d). It shows that the Logistic Regression model has good performance. For 
the Neural Network model in Fig. 6 (c), the recognition accuracy for attack sequences is the 
highest in the four models. But the accuracy for normal sequences is the lowest in the four 
models. Thus, the model is more inclined to classify sequences as attacks. Finally, for the 
SVH2M model in Fig. 6 (d), the recognition accuracy for normal sequences is the highest in 
the four models. The accuracy for attack sequences is not as high as Fig. 6 (c), but it is still 
better than the models in Fig. 6 (a) and Fig. 6 (b). So, the model is more prone to classifying 
sequences as normal. 
 

 
(a) K-means                                                       (b) Logistic Regression 

 
(c) Neural Network                                               (d) SVH2M 
 

Fig. 6. Confusion matrix diagram of different models. 
 
 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 10, October 2024                3003 

Fig. 7 shows the average ROC curves for different models. ROC curves and AUC (Area 
Under Curve) assess classification model performance. The ROC curve shows the true positive 
rate versus the false positive rate. It measures the area between average false positive and true 
positive rates. 

In Fig. 7, the K-means model's AUC is 0.38. The Logistic Regression model's AUC is 0.62. 
The SVH2M model's AUC is 0.67. The Neural Network model's AUC is 0.61. Therefore, the 
SVH2M model exhibits the best classification performance among the four models. The K-
means model performs the worst due to its inapplicability for classification tasks. The Logistic 
Regression and Neural Network models show similar performance. But the Logistic 
Regression and Neural Network are slightly inferior to SVH2M. Thus, the SVH2M has 
superior classification performance.  

 

 
(a) K-means                                                       (b) Logistic Regression 

 
(c) Neural Network                                               (d) SVH2M 

Fig. 7. ROC diagrams for different methods. 
 

In Table 3, the K-means has the lowest performance across all metrics. This means that K-
means has a lot of trouble to distinguish between normal and attack sequences. To compare 
K-means, Logistic Regression performs better in all metrics. But it's still not the best model of 
all. From the experimental results, the neural network performs the best in terms of recall. This 
means that it rarely misses the real attack sequence. However, its accuracy and specificity are 
lower than Logistic Regression and SVH2M. So, it mistakenly identifies some normal 
sequences as attack sequences. In the accuracy comparison, SVH2M shows a significant 
advantage. Its accuracy is 0.73. The lowest K-means method is only 0.37. SVH2M is twice as 
accurate as K-means. In terms of precision, SVH2M reaches a high value of 0.67. However, 
SVH2M performs slightly worse than other methods in terms of recall rates. In addition, the 
specificity of SVH2M is up to 0.81. These results show that SVH2M has high accuracy, 



3004    Chao-Hsien Hsieh et al.: Efficient SVH2M for information anomaly detection in manufacturing processes on system call 

precision, and specificity in classification tasks.  
In Table 4, the SVH2M model performed the best across all evaluation metrics, particularly 

with a high precision rate of 0.93 and a recall rate of 0.95, indicating that the model is adept 
at accurately identifying genuine malicious samples (high precision) while also covering a 
significant portion of them (high recall). Additionally, the high specificity of 0.91 
demonstrates the model's low misjudgment rate for normal samples. SVH2M, specifically 
designed for handling system call sequences, effectively utilizes temporal dependencies and 
contextual information within the sequences, achieving high classification performance. The 
Neural Network and Logistic Regression models exhibited similar performance in terms of 
precision, accuracy, and specificity, but the Neural Network slightly outperformed in accuracy. 
However, the Neural Network's lower recall rate of 0.54 suggests that it may miss a 
considerable number of malicious samples. While Neural Network and Logistic Regression 
performed well in some metrics, their deficiencies in recall indicate that they may not fully 
capture the characteristics of malicious samples. The K-means clustering algorithm performed 
relatively poorly in this classification task, notably with significantly lower precision and 
recall rates compared to other supervised learning models. This could be attributed to K-means 
being a distance-based clustering method that does not directly optimize classification 
performance and is sensitive to the initial centroid selection. 

From Table 3 and Table 4, the SVH2M model demonstrated the best performance on both 
datasets, indicating that it may be a strong choice for similar tasks and datasets. 
 

Table 3. Applications in each class comparison performance of classification models 
Models Precision(%) Accuracy(%) Recall(%) Specificity(%) 

K-means 0.37 0.38 0.36 0.39 
Logistic Regression 0.61 0.62 0.63 0.61 

Neural Network 0.58 0.60 0.70 0.51 
SVH2M 0.73 0.67 0.53 0.81 

 
Table 4. Comparison of classification performance of different models on the MAWI dataset 

Models Precision(%) Accuracy(%) Recall(%) Specificity(%) 
K-means 0.62 0.63 0.57 0.66 

Logistic Regression 0.71 0.78 0.59 0.83 
Neural Network 0.70 0.79 0.54 0.86 

SVH2M 0.93 0.92 0.95 0.91 
 

4.3.3 Comparison experiment of algorithms 
This experiment mainly tests the performance of SVMPSA in intrusion detection. And the 
experimental results are shown in Table 5. 

The BPNN (Backpropagation Neural Network) algorithm achieves an accuracy of 82.32%. 
Its running time is 28.94 seconds. This indicates that BPNN is not the best choice in the fast 
response scenario. The GRNN (Generalized Regression Neural Network) algorithm shows an 
accuracy rate of 85.56%, which is slightly higher than the BPNN. At the same time, its runtime 
is 22.46 seconds. GRNN is less than BPNN about 6 seconds. The performance is better than 
BPNN. The accuracy of SVM algorithm is only 67.42%, which is significantly lower than 
BPNN and GRNN. In addition, its running time reached 31.82 seconds, which is longer than 
the BPNN. In the present experimental environment, the traditional support vector machine 
algorithm is not the best choice for intrusion detection. 
 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 10, October 2024                3005 

 
Table 5. Algorithm comparison result 

Algorithm Accuracy(%) Time(s) 
BPNN  82.32 28.94 
GRNN  85.56 22.46 
SVM  67.42 31.82 

SVMPSA 94.69 15.89 
 

SVMPSA shows accuracy rate of 94.69%, which is much higher than other algorithms. In 
addition, its running time is only 15.89 seconds, which is the fastest of all the algorithms. This 
shows that SVMPSA not only performs well in accuracy, but also has a clear advantage in 
processing speed. 

Each HMM is trained to recognize a specific type of cyberattack. For example, HMM1 
detects Hydra-FTP (Hyd) attacks. HMM2 detects Webshell (Web) attacks. And HMM3 
detects Adduser (Add) attacks. Hyd is an attempt to brute-force the FTP protocol to use Hydra. 
Hydra is a powerful tool for login to crack. Add is used to add a new user to the system. In a 
cyber attack, the attacker creates a new user account on the victim's machine to gain access. 
Web is a malicious script. An attacker usually implants a Webshell into the victim's web server. 
A total of 100 samples are collected for the experiment. Three sample results are shown in 
Table 6. For example, sample 1 is classified as a Webshell attack by HMM1 and HMM2 when 
HMM3 is classified an Adduser attack. According to the majority voting principle, the final 
classification result is also a Webshell attack. It matches the actual label. So, the sample is 
classified correctly. 
 

Table 6. Comparison result 
Sample number HMM1 HMM2 HMM3 PATA Actual label 

1 Web Web Add Web Web 
2 Hyd Web Hyd Hyd Hyd 
3 Add Add Add Add Add 

 
The average accuracy of HMM1, HMM2, and HMM3 classification is 80.31%, 82.64%, 

and 81.47%, respectively. The average accuracy of PATA is 94.26%. It is an effective strategy 
to adopt the majority voting principle to determine the final classification result. Because it 
can use the multiple models to improve the robustness of classification. In the experiment, 
when multiple models give different classification results for the same sample, the majority 
voting principle can provide a more reliable final classification result. PATA algorithm can 
enhance classification performance by introducing additional decision logic. In addition, the 
multiple models can also play a key role in improving overall performance. So PATA can 
improve the accuracy of intrusion detection. 

4.3.4 performance evaluation of SVH2M model 
The SVH2M model combines Support Vector Machines with hidden Markov models. This 
combination classifies normal and abnormal behaviors. The AUC is the chosen key indicator. 
It assesses the model's performance. The HMM has an AUC of 0.71 as shown in Fig. 8. The 
SVH2M model's AUC is 0.88. The AUC is significantly increased in the SVH2M model. 
Therefore, the combined model enhances classification performance. 



3006    Chao-Hsien Hsieh et al.: Efficient SVH2M for information anomaly detection in manufacturing processes on system call 

 
Fig. 8. HMM vs SVH2M. 

 
The SVH2M method outperforms the original hidden Markov model as shown in Table 7. 

The mismatch rate for HMM decreases as the amount of data increases. While using 50% of 
the data, the mismatch rate is 3.89%. And, while using 80% of the data, the mismatch rate 
drops to 1.98%. Similarly, the mismatch rate for SVH2M also decreases as the amount of data 
increases. When using 50% of the data, the SVH2M mismatch rate is 2.14%. And when using 
80% of the data, the SVH2M mismatch rate is 1.24%. When using 80% of the data, SVH2M's 
mismatch rate is lower than HMM. Data usage is dropped slightly from 70% to 80%. This 
superiority is evident in the mismatch rate on various proportions of datasets. When the 
training dataset is large, the mismatch rate significantly decreases. The mismatch rate will 
stabilize around 80%. It also suggests that the SVH2M model's performance has potential for 
further improvement with more training data. But adding more data beyond a certain point 
don't improve the model's performance. Therefore, in practical scenarios, people should 
expand the training set as much as possible. This ensures the model can fully learn and adapt 
to various behavior patterns. 
 

Table 7. Mismatch rate 
DATASET(%) HMM(%) SVH2M(%) 

50 3.89 2.14 
60 2.52 1.88 
70 1.99 1.24 
80 1.98 1.24 

 
In summary, by adopting the SVH2M model, this model achieves lower mismatch rate 

across datasets of different sizes. Moreover, as the training dataset increases, there is potential 
for further improvement in performance. 

5. Conclusion 
This paper conducts an in-depth study of the system call process in manufacturing workflows. 
It classifies normal and abnormal intrusions. To enhance the performance and efficiency of 
detecting attacks in manufacturing systems, the SVH2M model is used to establish behavior 
models. This study compares pSVM with several other common machine learning methods. 
The results show that pSVM significantly outperforms in accuracy, precision, and specificity. 
Hence, pSVM is combined with mHMM. The SVH2M model exhibits superior false alarm 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 10, October 2024                3007 

rates on datasets of varying normal proportions. By adopting the SVH2M model approach, the 
performance and efficiency of manufacturing systems are effectively improvement. This 
research provides a viable method for enhancing the security of manufacturing systems. It 
guides further improvement and optimization of model performance. However, this study still 
has some limitations. First, the research mainly focuses on the system call process without an 
in-depth analysis of other types of network traffic. Second, the study has not yet covered all 
possible types of attack behavior. Therefore, future research can further expand the models 
and algorithms to improve the comprehensiveness and accuracy of the detection system. 

Acknowledgement 
This work was supported by the Initiation Funds for High-level Talents Program of Xi’an 
International University (grant no. XAIU202411). 

References 
[1] N. Moustafa, N. Koroniotis, M. Keshk, A. Y. Zomaya and Z. Tari, “Explainable Intrusion 

Detection for Cyber Defences in the Internet of Things: Opportunities and Solutions,” IEEE 
Communications Surveys & Tutorials, vol.25, no.3, pp.1775-1807, thirdquarter 2023. 
Article (CrossRef Link) 

[2] M. Nuaimi, L. C. Fourati and B. B. Hamed, “Intelligent Approaches Toward Intrusion Detection 
Systems for Industrial Internet of Things: A Systematic Comprehensive Review,” Journal of 
Network and Computer Applications, vol.215, Jun. 2023. Article (CrossRef Link) 

[3] J. Qian, X. Du, B. Chen, B. Qu, K. Zeng and J. Liu, “Cyber-Physical Integrated Intrusion Detection 
Scheme in SCADA System of Process Manufacturing Industry,” IEEE Access, vol.8, pp.147471-
147481, Aug. 2020. Article (CrossRef Link) 

[4] S. Alem, D. Espès, L. Nana, E. Martin and F. De Lamotte, “A Novel bi-anomaly-based Intrusion 
Detection System Approach for Industry 4.0,” Future Generation Computer Systems, vol.145, 
pp.267-283, 2023. Article (CrossRef Link) 

[5] R.P. Lippmann, D.J. Fried, I. Graf, J.W. Haines, K.R. Kendall, D. McClung, D. Weber, S.E. 
Webster, D. Wyschogrod, R.K. Cunningham, M.A. Zissman, “Evaluating intrusion detection 
systems: the 1998 DARPA off-line intrusion detection evaluation,” in Proc. of DARPA 
Information Survivability Conference and Exposition, DISCEX'00, vol.2, pp.12-26, SC, USA, Jan. 
2000. Article (CrossRef Link) 

[6] R. Lippmann, J. W. Haines, D. J. Fried, J. Korba, and K. Das, “Analysis and Results of the 1999 
DARPA Off-Line Intrusion Detection Evaluation,” in Proc. of third International Workshop, 
Recent Advances in Intrusion Detection, LNCS, vol.1907, pp.162-182, France, 2000.  
Article (CrossRef Link) 

[7] Z. Liu, N. Japkowicz, R. Wang, Y. Cai, D. Tang, and X. Cai, “A statistical pattern based feature 
extraction method on system call traces for anomaly detection,” Information and Software 
Technology, vol.126, Oct. 2020. Article (CrossRef Link) 

[8] F. Yu, C. Xu, Y. Shen, J.-Y. An, and L.-F. Zhang, “Intrusion detection based on system call finite-
state automation machine,” in Proc. of 2005 IEEE International Conference on Industrial 
Technology, pp.63-68, Hong Kong, China, Dec. 2005. Article (CrossRef Link) 

[9] X. Zhang, Z. Zhu and P. Fan, “Intrusion detection based on cross-correlation of system call 
sequences,” in Proc. of 17th IEEE International Conference on Tools with Artificial Intelligence 
(ICTAI'05), pp.7-283, Hong Kong, China, Nov. 2005. Article (CrossRef Link) 

[10] S. Lv, J. Wang, Y. Yang and J. Liu, “Intrusion Prediction with System-call Sequence-to-sequence 
Model,” IEEE Access, vol.6, pp.71413-71421, Nov. 2018. Article (CrossRef Link) 

 

https://doi.org/10.1109/COMST.2023.3280465
https://doi.org/10.1016/j.jnca.2023.103637
https://doi.org/10.1109/ACCESS.2020.3015900
https://doi.org/10.1016/j.future.2023.03.024
https://doi.org/10.1109/DISCEX.2000.821506
https://doi.org/10.1007/3-540-39945-3_11
https://doi.org/10.1016/j.infsof.2020.106348
https://doi.org/10.1109/ICIT.2005.1600611
https://doi.org/10.1109/ICTAI.2005.78
https://doi.org/10.1109/ACCESS.2018.2881561


3008    Chao-Hsien Hsieh et al.: Efficient SVH2M for information anomaly detection in manufacturing processes on system call 

[11] A. Al-Saleh, “A balanced communication-avoiding support vector machine decision tree method 
for smart intrusion detection systems,” Scientific Reports, vol.13, no.1, Jun. 2023.  
Article (CrossRef Link) 

[12] M. A. Almaiah, O. Almomani, A. Alsaaidah, S. Al-Otaibi, N. Bani-Hani, A. K. Al Hwaitat, A. Al-
Zahrani, A. Lutfi, A. B. Awad, T. H. H. Aldhyani, “Performance Investigation of Principal 
Component Analysis for Intrusion Detection System Using Different Support Vector Machine 
Kernels,” Electronics, vol.11, no.21, Nov. 2022. Article (CrossRef Link) 

[13] A. A. Alqarni, “Toward support-vector machine-based ant colony optimization algorithms for 
intrusion detection,” Soft Computing, vol.27, no.10, pp.6297-6305, May 2023.  
Article (CrossRef Link) 

[14] M. Hosseinzadeh, A. M. Rahmani, B. Vo, M. Bidaki, M. Masdari, and M. Zangakani, “Improving 
security using SVM-based anomaly detection: issues and challenges,” Soft Computing, vol.25, 
pp.3195-3223, Feb. 2021. Article (CrossRef Link) 

[15] T. Shawly, “A Detection and Response Architecture for Stealthy Attacks on Cyber-Physical 
Systems,” JOIV International Journal on Informatics Visualization, vol.7, no.3, pp.801-807, Sep. 
2023. Article (CrossRef Link) 

[16] C. Dong, H. Wu and Q. Li, “Multiple Observation HMM-Based CAN Bus Intrusion Detection 
System for In-Vehicle Network,” IEEE Access, vol.11, pp.35639-35648, Apr. 2023.  
Article (CrossRef Link) 

[17] T. Shawly, M. Khayat, A. Elghariani and A. Ghafoor, “Evaluation of HMM-Based Network 
Intrusion Detection System for Multiple Multi-Stage Attacks,” IEEE Network, vol.34, no.3, 
pp.240-248, May/Jun. 2020. Article (CrossRef Link) 

[18] R. Agarwal and M. V. Joshi, “PNrule: A New Framework for Learning Classifier Models in Data 
Mining (a Case-Study in Network Intrusion Detection),” in Proc. of the 2001 SIAM International 
Conference on Data Mining, pp.1-17, 2001. Article (CrossRef Link) 

[19] E. Nikolova and V. Jecheva, “Some similarity coefficients and application of data mining 
techniques to the anomaly-based IDS,” Telecommunication Systems, vol.50, no.2, pp.127-135, 
2012. Article (CrossRef Link) 

[20] S. Forrest, S.A. Hofmeyr, A. Somayaji and T.A. Longstaff, “A sense of self for Unix processes,” 
in Proc. of 1996 IEEE Symposium on Security and Privacy, pp.120-128, 1996.  
Article (CrossRef Link) 

[21] S. A. Hofmeyr, S. Forrest and A. Somayaji, “Intrusion detection using sequences of system calls,” 
Journal of Computer Security, vol.6, no.3, pp.151-180, 1998. Article (CrossRef Link) 

[22] P. Khandelwal, P. Likhar and R. S. Yadav, “Machine Learning Methods leveraging ADFA-LD 
Dataset for Anomaly Detection in Linux Host Systems,” in Proc. of 2022 2nd International 
Conference on Intelligent Technologies (CONIT), pp.1-8, Hubli, India, 2022.  
Article (CrossRef Link) 

[23] S. Wunderlich, M. Ring, D. Landes and A. Hotho, “Comparison of System Call Representations 
for Intrusion Detection,” in Proc. of International Joint Conference: 12th International 
Conference on Computational Intelligence in Security for Information Systems (CISIS 2019) and 
10th International Conference on EUropean Transnational Education (ICEUTE 2019), AISC, 
vol.951, Springer, Seville, Spain, pp.14-24, May. 2020. Article (CrossRef Link) 

[24] I. Rosenberg and E. Gudes, “Bypassing system calls–based intrusion detection systems,” 
Concurrency and Computation: Practice and Experience, vol.29, no.16, Aug. 2017.  
Article (CrossRef Link) 

[25] M. Xie, J. Hu and J. Slay, “Evaluating host-based anomaly detection systems: Application of the 
one-class SVM algorithm to ADFA-LD,” in Proc. of 2014 11th International Conference on Fuzzy 
Systems and Knowledge Discovery (FSKD), pp.978-982, Xiamen, China, 2014. 
Article (CrossRef Link) 

[26] G. Creech and J. Hu, “Generation of a new IDS test dataset: Time to retire the KDD collection,” 
in Proc. of 2013 IEEE Wireless Communications and Networking Conference (WCNC), pp.4487-
4492, Shanghai, China, Apr. 2013. Article (CrossRef Link) 

https://doi.org/10.1038/s41598-023-36304-z
https://doi.org/10.3390/electronics11213571
https://doi.org/10.1007/s00500-023-07906-6
https://doi.org/10.1007/s00500-020-05373-x
https://joiv.org/index.php/joiv/article/view/1323
https://doi.org/10.1109/ACCESS.2023.3265018
https://doi.org/10.1109/MNET.001.1900426
https://doi.org/10.1137/1.9781611972719.29
https://doi.org/10.1007/s11235-010-9390-3
https://doi.org/10.1109/SECPRI.1996.502675
https://dl.acm.org/doi/10.5555/1298081.1298084
https://doi.org/10.1109/CONIT55038.2022.9848305
https://doi.org/10.1007/978-3-030-20005-3_2
https://doi.org/10.1002/cpe.4023
https://doi.org/10.1109/FSKD.2014.6980972
https://doi.org/10.1109/WCNC.2013.6555301


KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 10, October 2024                3009 

[27] K. Cho, K. Mitsuya and A. Kato, “Traffic data repository at the WIDE project,” in Proc. of the 
annual conference on USENIX Annual Technical Conference (ATEC '00), USENIX Association, 
USA, 2000. Article (CrossRefLink) 

 
 
 
 
 
 
 
 
 
 
 
 
 

CHAO-HSIEN HSIEH received the Ph.D. degree from the Department of Computer 
Science and Information Engineering, National Cheng Kung University, Tainan, Taiwan, in 
2015. He is currently an Associate Professor with the College of Engineering, Xi'an 
International University, Xi'an 710077, Shaanxi, China. His research interests include cloud 
computing, blockchain, and database.  
 
 
 
 

 
FENGYA XU is currently pursuing a master’s degree at the School of Cyber Science and 
Engineering, Qufu Normal University, Qufu, Shandong, China. Her research interests include 
load balancing direction in cloud computing and network security.  
  
 
 
 
 
 

 
QINGQING YANG is currently pursuing a master's degree at the School of Cyber Science 
and Engineering, Qufu Normal University. Her research interests is cloud computing and 
information processing.  
  
 
 
 
 
 

 
DEHONG KONG is currently pursuing a master's degree at the School af Cyber Science 
and Engineering, Qufu Normal University, Qufu, Shandong, China. Her research interests 
include cloud computing and big data.  
  
 
 
 
 

https://doi.org/10.5555/1267724.1267775

