Acknowledgement
본 연구는 국립환경 과학원의 지원(NIER-2024-04-02-008)과 2024년 과학기술정보통신부 및 정보통신기획평가원의 SW중심대학사업의 연구결과로 수행되었음"(2022-0-01127)
References
- Brahmam, M. V. and Gopikrishnan, S.(2023), "Fusing long short-term memory and autoencoder models for robust anomaly detection in indoor air quality time-series data", International Journal on Recent and Innovation Trends in Computing and Communication, vol. 11, no.10, pp.182-195.
- Chen, M., Peng, H., Fu, J. and Ling, H.(2021), "Autoformer: Searching transformers for visual recognition", Proceedings of the IEEE/CVF International Conference on Computer Vision.
- Guo, W., Xiyu, L. and Laisheng, X.(2020), "Membrane system-based improved neural networks for time-series anomaly detection", Processes, vol. 8, no. 9, 1168, https://doi.org/10.3390/pr8091168.
- Hearst, M. A., Dumais, S. T., Osuna, E., Platt, J. and Scholkopf, B.(1998), "Support vector machines", IEEE Intelligent Systems and their Applications, vol. 13, no. 4, pp.18-28.
- Hochreiter, S.(1997), "Long Short-Term Memory", Neural Computation, vol. 9, no. 8, pp.1735-1780.
- Jin, J. K. and Jin, J. I.(2021), "A study on the effect of traffic congestion on particulate matter concentration in Seoul: Big Data approach", Journal of Korea Planning Association, vol. 56, no. 1, pp.121-136.
- Mohtar, A. A. A., Latif, M. T., Baharudin, N. H., Ahamad, F., Chung, J. X., Othman, M. and Juneng, L.(2018), "Variation of major air pollutants in different seasonal conditions in an urban environment in Malaysia", Geoscience Letters, vol. 5, no. 1, pp.1-13.
- Park, J. Y., Seo, Y. S. and Cho, J, H.(2023), "Unsupervised outlier detection for time-series data of indoor air quality using LSTM autoencoder with ensemble method", Journal of Big Data, vol. 10, no. 1, p.66.
- Ronneberger, O., Fischer, P. and Brox, T.(2015), "U-net: Convolutional networks for biomedical image segmentation", Medical Image Computing and Computer-assisted Intervention-MICCAI 2015: 18th International Conference, Proceedings Part III 18, pp.234-241.
- Vaswani, A.(2017), "Attention is all you need", arXiv preprint arXiv:1706.03762.
- Von Schneidemesser, E., Steinmar, K., Weatherhead, E. C., Bonn, B., Gerwig, H. and Quedenau, J.(2019), "Air pollution at human scales in an urban environment: Impact of local environment and vehicles on particle number concentrations", Science of the Total Environment, vol. 688, pp.691-700.
- Wang, A., Xu, J., Tu, R., Saleh, M. and Hatzopoulou, M.(2020), "Potential of machine learning for prediction of traffic related air pollution", Transportation Research Part D: Transport and Environment, vol. 88, 102599.
- Wu, H., Hu, T., Liu, Y., Zhou, H., Wang, J. and Long, M.(2022), "Timesnet: Temporal 2d-variation modeling for general time series analysis", arXiv preprint arXiv:2210.02186.
- Zhang, M., Guo, J., Li, X. and Jin, R.(2020), "Data-driven anomaly detection approach for time-series streaming data", Sensors, vol. 20, no. 19, 5646.
- Zhou, T., Ma, Z., Wen, Q., Wang, X., Sun, L. and Jin, R.(2022), "Fedformer: Frequency enhanced decomposed transformer for long-term series forecasting", International Conference on Machine Learning, PMLR, pp.27268-27286.