Acknowledgement
본 연구는 국토교통부/국토교통과학기술진흥원의 지원으로 수행되었음(과제번호 RS-2021-KA161756, 과제명: 실시간 수요대응 자율주행 대중교통 모빌리티 서비스 기술 개발)
References
- An, T. H., Kang, J. and Min, K. W.(2023), "Network adaptation for color image semantic segmentation", IET Image Processing, vol. 17, no. 10, pp.2972-2983.
- Antonini, M., Barlaud, M., Mathieu, P. and Daubechies, I.(1992), "Image coding using wavelet transform", IEEE Trans. Image Processing, vol. 1, no. 2, pp.205-220.
- Azimi, S. M., Fischer, P., Korner, M. and Reinartz, P.(2018), "Aerial LaneNet: Lane-marking semantic segmentation in aerial imagery using wavelet-enhanced cost-sensitive symmetric fully convolutional neural networks", IEEE Transactions on Geoscience and Remote Sensing, vol. 57, no. 5, pp.2920-2938.
- Badrinarayanan, V., Kendall, A. and Cipolla, R.(2017), "SegNet: A deep convolutional encoder-decoder architecture for image segmentation", IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no. 12, pp.2481-2495.
- Chen, L. C., Papandreou, G., Kokkinos, I., Murphy, K. and Yuille, A. L.(2017), "Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs", IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 40, no. 4, pp.834-848.
- Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R. and Schiele, B.(2016), "The cityscapes dataset for semantic urban scene understanding", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.3213-3223.
- Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T. and Houlsby, N.(2021), "An image is worth 16x16 words: Transformers for image recognition at scale", International Conference on Learning Representations (ICLR).
- Hoffman, J., Tzeng, E., Park, T., Zhu, J. Y., Isola, P., Saenko, K. and Darrell, T.(2018), "Cycada: Cycle-consistent adversarial domain adaptation", Proceedings of the 35th International Conference on Machine Learning (ICML), pp.1989-1998.
- Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T. and Adam, H.(2017), "Mobilenets: Efficient convolutional neural networks for mobile vision applications", arXiv preprint arXiv:1704.04861.
- Kang, J., Han, S. J., Kim, N. and Min, K. W.(2021), "ETLi: Efficiently annotated traffic LiDAR dataset using incremental and suggestive annotation", ETRI Journal, vol. 43, no. 4, pp.630-639.
- Kingma D. P. and Ba J. L.(2015), "ADAM: A method for stochastic optimization", in Proc. third International Conference on Learning Representations (ICLR), San Diego, California, pp.1-15.
- Krizhevsky, A., Sutskever, I. and Hinton, G. E.(2012), "ImageNet classification with deep convolutional neural networks", Advances in Neural Information Processing Systems, vol. 25.
- Liao, Y., Xie, J. and Geiger, A.(2022), "Kitti-360: A novel dataset and benchmarks for urban scene understanding in 2d and 3d", IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 45, no. 3, pp.3292-3310.
- Long, J., Shelhamer, E. and Darrell, T.(2015), "Fully convolutional networks for semantic segmentation", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.3431-3440.
- Pan, H., Hong, Y., Sun, W. and Jia, Y.(2022), "Deep dual-resolution networks for real-time and accurate semantic segmentation of traffic scenes", IEEE Transactions on Intelligent Transportation Systems, vol. 24, no. 3, pp.3448-3460.
- Paszke, A., Chaurasia, A., Kim, S. and Culurciello, E.(2016), "ENet: A deep neural network architecture for real-time semantic segmentation", arXiv preprint arXiv:1606.02147.
- Romera, E., Alvarez, J. M., Bergasa, L. M. and Arroyo, R.(2018), "ERFNet: Efficient residual factorized convnet for real-time semantic segmentation", IEEE Transactions on Intelligent Transportation Systems, vol. 19, no. 1, pp.263-272.
- Zhang, X., Zhou, X., Lin, M. and Sun, J.(2018), "Shufflenet: An extremely efficient convolutional neural network for mobile devices", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.6848-6856.
- Zhao, C., Xia, B., Chen, W., Guo, L., Du, J., Wang, T. and Lei, B.(2021), "Multi-scale wavelet network algorithm for pediatric echocardiographic segmentation via hierarchical feature guided fusion", Applied Soft Computing, vol. 107, 107386.
- Zheng, S., Lu, J., Zhao, H., Zhu, X., Luo, Z., Wang, Y. and Yu, G.(2021), "Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers", Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.6881-6890.