DOI QR코드

DOI QR Code

SP조사를 활용한 중소도시의 수요응답형 대중교통 이용자 선호 요인 분석

A Research on User Preference Factor of DRT in Small and Medium-sized Cities Using Stated Preference Survey

  • 김지윤 (경기연구원 모빌리티연구실 ) ;
  • 문병섭 (한국건설기술연구원 도로교통연구본부 ) ;
  • 하정아 (한국건설기술연구원 도로교통연구본부) ;
  • 장지용 (한국건설기술연구원 도로교통연구본부)
  • Jiyoon Kim (Gyeonggi Research Institute, Mobility Research Division) ;
  • Byeongsup Moon (Korea Institute of Civil engineering and building Technology, Department of Highway & Transportation Research) ;
  • Jungah Ha (Korea Institute of Civil engineering and building Technology, Department of Highway & Transportation Research) ;
  • Jiyong Jang (Korea Institute of Civil engineering and building Technology, Department of Highway & Transportation Research)
  • 투고 : 2024.09.06
  • 심사 : 2024.10.08
  • 발행 : 2024.10.31

초록

수요응답형 대중교통(이하 DRT, Demand Response Transit)은 스마트폰 앱과 차량단말 등을 활용하여 이용자호출에 따라 가변적인 노선으로 운행되는 대중교통이다. DRT는 호출 후 대기시간, 탑승지점 접근시간, 차내통행시간, 우회통행시간, 하차 후 도달시간 등이 운행방식에 기반한 이용자 선호요인이 발생된다. 본 연구는 SP조사를 통해 시민들이 위 요인 중 어떤 요인에 가장 민감하게 반응하는지 조사하였다. 조사는 5개의 속성변수로 구성된 2개의 DRT 대안을 제시하여 보다 선호하는 수단을 선택하도록 하였으며, 출퇴근 상황과 여가 상황 2가지 상황에 대한 응답을 조사하였다. 분석결과 출퇴근시에도 여가시에도 호출 후 대기시간이 가장 큰 선호요인이었으며, 탑승지점 접근시간은 가장 약한 영향요인인 것으로 분석되었다. 단, 우회통행에 대한 민감도는 출퇴근 상황에서 여가시간 대비 2배 이상인 것으로 나타났다. 본 연구의 결과는 DRT 운영 시 시간대에 따라서 최적화 목표를 차별화하여 이용자 만족도와 시스템 효율성을 향상시키는 데 기여할 것으로 보여진다.

Demand-Response Transit (DRT) is public transportation that operates on flexible routes according to user requests via smartphone apps and vehicle terminals. In DRT, user preference factors are generated based on the operational method, such as wait time after calling, approach time to the boarding point, in-vehicle time, detour time (if any), and egress time after arrival. Through an SP survey, this study investigated which of these factors citizens are most sensitive to. The survey presented two DRT alternatives consisting of five attribute variables, and asked respondents to choose the preferred mode, examining two situations: commuting and leisure travel. The analysis showed that wait time after calling was the strongest factor for both commuting and leisure travel, whereas boarding point access time had the weakest influence. However, sensitivity to detours was found to be more than twice as important in leisure travel compared to commuting. The results of this study are expected to contribute to improving user satisfaction and system efficiency by differentiating optimization targets according to the time of day in DRT operations.

키워드

과제정보

본 연구는 국가연구개발사업인 "실시간 수요대응 자율주행 대중교통 모빌리티 서비스 기술 개발(RS-2021-KA161756)"의 연구비 지원에 의해 수행되었습니다.

참고문헌

  1. Amirgholy, M. and Gonzales, E. J.(2016), "Demand responsive transit systems with time-dependent demand: User equilibrium, system optimum, and management strategy", Transportation Research Part B: Methodological, vol. 92, pp.234-252.
  2. Arbex, R. O. and Da Cunha, C. B.(2015), "Efficient transit network design and frequencies settingmulti-objective optimization by alternating objective genetic algorithm", Transportation Research Part B: Methodological, vol. 81, no. 2, pp.355-376.
  3. Coslovich, L., Pesenti, R. and Ukovich, W.(2006), "A Two-phase insertion technique of unexpected customers for a dynamic dial-a-ride problem", European Journal of Operational Research, vol. 175, no. 3, pp.1605-1615.
  4. Dessouky, M., Rahimi, M. and Weidner, M.(2003), "Jointly optimizing cost, service, and environmental performance in demand-responsive transit scheduling", Transportation Research Part D: Transport and Environment, vol. 8, no. 6, pp.433-465.
  5. Farah, A., Nawal, L., Dana, A. and Tariq, A.(2023), "User preference analysis for an integrated system of bus rapid transit and on-demand shared mobility services in Amman, Jordan", Urban Science, vol. 7, no. 4, 111. https://doi.org/10.3390/urbansci7040111
  6. Go, Y., Lee, J. and Kim, J.(2022), "A stated preference analysis of on-demand mobility services in the commuting context in Seoul metropolitan area", Journal of Korean Society of Transportation, vol. 40, no. 5, pp.700-716.
  7. Guo, R., Guan, W. and Zhang, W.(2018), "Route design problem of customized buses: Mixed integer programming model and case study", Journal of Transportation Engineering, Part A: Systems, vol. 144, no. 11, 04018069.
  8. Guo, R., Guan, W., Zhang, W., Meng, F. and Zhang, Z.(2019), "Customized bus routing problem with time window restrictions: Model and case study", Transportmetrica A: Transport Science, vol. 15, no. 2, pp.1804-1824.
  9. Han, S. W., Kim, D. K. and Moon, S.(2024), "Incentive strategy to improve passenger convenience and operation efficiency of demand-responsive transportation systems", Journal of Korean Society of Transportation, vol. 42, no. 2, pp.180-195.
  10. Huang, D., Tong, W., Wang, L. and Yang, X.(2020), "An analytical model for the many-to-one demand responsive transit systems", Sustainability, vol. 12, no. 1, 298. https://doi.org./10.3390/su12010298
  11. Incheon Institute(2022), Incheon metropolitan city I-MOD public transport policymaking study.
  12. Jaw, J. J., Odoni, A. R., Psaraftis, H. N. and Wilson, N. H.(1986), "A heuristic algorithm for the multi-vehicle advance request dial-a-ride problem with time windows", Transportation Research Part B: Methodological, vol. 20, no. 3, pp.243-257.
  13. Kim, J. and Bang, S.(2022), "Development of a model for dynamic station assignmentto optimize demand responsive transit operation", Journal of Korea Institute of Intelligent Transport Systems, vol. 21, no. 1, pp.18-34.
  14. Kim, W., Han, W. and Park, J.(2024), "A comparative study on factors affecting satisfaction by travel purpose for urban demand response transport service: Focusing on Sejong Shucle", Journal of Korea Institute of Intelligent Transport Systems, vol. 23, no. 2, pp.132-141.
  15. Korea Research Institute of Transportation Industries(2012), The feasibility study on the introduction of Demand-Responsive Transprot(DRT) in rural areas.
  16. Korea Transportation Institute(2022), Impact analysis of implementing the demand responsive transit system in metropolitan areas.
  17. Lyu, Y., Chow, C. Y., Lee, V. C., Ng, J. K., Li, Y. and Zeng, J.(2019), "CB-Planner: A bus line planning framework for customized bus systems", Transportation Research Part C: Emerging Technologies, vol. 101, pp.233-253.
  18. Nourbakhsh, S. M. and Ouyang, Y.(2012), "A structured flexible transit system for low demand areas", Transportation Research Part B: Methodological, vol. 46, no. 1, pp.204-216.
  19. Quadrifoglio, L., Dessouky, M. M. and Ordonez, F.(2008), "A simulation study of demand responsive transit system design", Transportation Research Part A: Policy and Practice, vol. 42, no. 4, pp.718-737.
  20. Saxena, N., Rashidi, T. and Rey, D.(2020), "Determining the market uptake of demand responsive transport enabled public transport service", Sustainability, vol. 12, no. 12, 4914. https://doi.org/10.3390/su12124914
  21. Seo, S., Kim, J., Lee, J. and Yang, B.(2022), "Analysis on the importance rank of service components of autonomous mobility-on-demand service by potential user groups", The Journal of the Korea Institute of Intelligent Transport Systems, vol. 21, no. 6, pp.177-193. https://doi.org/10.12815/kits.2022.21.6.177
  22. Shen, C. W. and Quadrifoglio, L.(2012), "Evaluation of zoning design with transfers for paratransit services", Transportation Research Record, vol. 2277, no. 1, pp.82-89.
  23. Tolic, I. H., Nyarko, E. K. and Ceder, A.(2020), "Optimization of public transport services to minimize passengers waiting times and maximize vehicles occupancy ratios", Electronics, vol. 9, no. 2, 360. https://doi.org/10.3390/electronics9020360
  24. Wang, C., Ma, C. and Xu, X. D.(2020), "Multi-objective optimization of real-time customized bus routes based on two-stage method", Physica A: Statistical Mechanics and its Applications, vol. 537, 122774.