과제정보
본 연구는 2022년 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원(No.2022M1A3C2076483)을 받아 수행되었습니다.
참고문헌
- Balla, K., Sevilla, R., Hassan, O., Morgan, K. (2021) An Application of Neural Networks to the Prediction of Aerodynamic Coefficients of Aerofoils and Wings, Appl. Math. Model., 96, pp.456~479.
- Bhatnagar, S., Afshar, Y., Pan, S., Duraisamy K., Kaushik, S. (2019) Prediction of Aerodynamic Flow Fields using Convolutional Neural Networks, Comput. Mech., 64, pp.525~545.
- Chadebec, C., Allassonniere, S. (2021) Data Augmentation with Variational Autoencoders and Manifold Sampling, In Deep Generative Models, and Data Augmentation, Labelling, and Imperfections: First Workshop, DGM4MICCAI 2021, and First Workshop, DALI 2021, Held in Conjunction with MICCAI 2021, Proceedings 1, pp.184~192.
- Chadebec, C., Allassonniere, S. (2022) A Geometric Perspective on Variational Autoencoders, Adv. Neural Inf. Proc. Syst., 35, pp.19618~19630.
- Geelen, R., Wright, S., Willcox, K. (2023) Operator Inference for Non-Intrusive Model Reduction with Quadratic Manifolds, Comput. Methods App. Mech. & Eng., 403, p.115717.
- Jia, X., Li, C., Ji, W., Gong, C. (2022) A Hybrid Reduced-Order Model Combing Deep Learning for Unsteady Flow, Phys. Fluids, 34(9), p.097112.
- Lee, S., Jang, K., Cho, H., Kim, H., Shin, S. (2021) Parametric Non-Intrusive Model order Reduction for Flow-Fields using Unsupervised Machine Learning, Comput. Methods Appl. Mech. & Eng., 384, p.113999.
- Mumuni, A., Mumuni, F. (2022) Data Augmentation: A Comprehensive Survey of Modern Approaches, Array, 16, p.100258.
- Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X. (2016) Improved Techniques for Training GANs, Adv. Neural Inf. Proc. Syst., 29.
- Spalart, P.R., Venkatakrishnan, V. (2016) On the Role and Challenges of CFD in the Aerospace Industry, The Aeronaut. J., 120(1223), pp.209~232.
- Xia, B., Sun, D.-W. (2002) Applications of Computational Fluid Dynamics (CFD) in the Food Industry: A Review, Comput. & Electron. Agric., 34(1-3), pp.5~24.