과제정보
이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구이며(NRF-2022R1C1C1012599), 또한 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(RS-2024-00356107).
참고문헌
- Coogan, T.J., Kazmer, D.O. (2017) Bond and Part Strength in Fused Deposition Modeling, Rapid Prototyp. J., 23(2), pp. 414~422.
- Digimat (2023) User's Manual, MSC Software Company (Release 2023.2)
- El Essawi, B., Abdallah, S., Ali, S., Mohammed, A.N.A., Susantyoko, R.A., Pervaiz, S. (2024) Optimization of Infill Density, Fiber Angle, Carbon Fiber Layer Position in 3D Printed Continuous Carbon-Fiber Reinforced Nylon Composite, Results Eng., 21, p.101926.
- Hill, N., Haghi, M. (2014) Deposition Direction-Dependent Failure Criteria for Fused Deposition Modeling Polycarbonate, Rapid Prototyp. J., 20(3), pp.221~227.
- Kang, Y.G., Lee, T.W., Shin, G.S. (2017) The Influence of Experiment Variables on 3D Printing using ABS Resin, J. Korean Soc. Manuf. Proc. Eng., 16(2), pp.94~101.
- Kim, Y.M., Kim, Y.H. (2020) A Study on the Fatigue Analysis of Glass Fiber Reinforced Plastics with Linear and Nonlinear Multi-Scale Material Modeling, J. Comput. Struct. Eng. Inst. Korea, 33(2), pp.81~93.
- Kim, Y.M., Kim, Y.H. (2019) Coupled Analysis with Digimat for Realizing the Mechanical Behavior of Glass Fiber Reinforced Plastics, J. Comput. Struct. Eng. Inst.Korea, 32(6), pp.349~357.
- Lee, S., Ryu, S. (2020) A Review of Mean-Field Homgenization for Effective Physical Properties of Particle-Reinforced Composites, Compos. Res., 33(2), pp.81~89.
- Mishra, P.K., Karthik, B., Jagadesh, T. (2024) Finite Element Modelling and Experimental Investigation of Tensile, Flexural, and Impact Behaviour of 3D-Printed Polyamide, J. Inst. Eng. (India): Series D, 105(1), pp.275~283.
- Mohan, E., Saravana Kumar, M. (2022) Experimental Investigation on Mechanical and Tribological Properties of the Fused Filament Fabrication of Poly-Lactic Acid Parts with Various Print Orientations, Appl. Phys. A, 128(5), p.428.
- Nabavi-Kivi, A., Ayatollahi, M.R., Razavi, N. (2023) Investigating the Effect of Raster Orientation on Fracture behavior of 3D-Printed ABS Specimens under Tension-Tear Loading, Eur. J. Mech.-A/Solids, 99, p.104944.
- Park, H.M., Lee, G.B., Seon, C.R., Yoon, M. (2022) Experimental Validation of Topology Design Optimization Considering Lamination Direction of Three-dimensional Printing, J. Comput. Struct. Eng. Inst. Korea, 35(3), pp.191~196.
- Samykano, M. (2021) Mechanical Property and Prediction Model for FDM-3D Printed Polylactic Acid (PLA), Arabian J. Sci. & Eng., 46, pp.7875~7892.
- Samykano, M., Selvamani, S.K., Kadirgama, K., Ngui, W.K., Kanagaraj, G., Sudhakar, K. (2019) Mechanical Property of FDM Printed ABS: Influence of Printing Parameters, The Int. J. Adv. Manuf. Technol., 102, pp.2779~2796.
- Turaka, S., Jagannati, V., Pappula, B., Makgato, S. (2024) Impact of Infill Density on Morphology and Mechanical Properties of 3D Printed ABS/CF-ABS Composites using Design of Experiments, Heliyon, 10(9), p.e29920.
- Vedrtnam, A., Ghabezi, P., Gunwant, D., Jiang, Y., Sam-Daliri, O., Harrison, N., Goggins, J., Finnegan, W. (2023) Mechanical Performance of 3D-Printed Continuous Fibre Onyx Composites for Drone Applications: An Experimental and Numerical Analysis, Compos. Part C: Open Access, 12, p.100418.
- Wang, X., Zhao, L., Fuh, J.Y.H., Lee, H.P. (2019) Effect of Porosity on Mechanical Properties of 3D Printed Polymers: Experiments and Micromechanical Modeling based on X-ray Computed Tomography Analysis, Polym., 11(7), p.1154.