DOI QR코드

DOI QR Code

Variations of VHCF Characteristics by Microstructure of a Spring Steel to UNSM Treatment

  • Seung-Hoon Nahm (Korea Research Institute of Standards and Science) ;
  • Min-Soo Suh (Kyoto University) ;
  • Chang-Min Suh (School of Mechanical Engineering, Kyungpook National University)
  • 투고 : 2024.06.27
  • 심사 : 2024.08.19
  • 발행 : 2024.10.31

초록

The bainitic structure resulting from the austempering of spring steel exhibits high strength and ductility. On the other hand, there appears to be no study on the effects of very high cycle fatigue (VHCF) and ultrasonic nanocrystal surface modification (UNSM) of this bainite structure. Therefore, this study compared the fatigue properties of VHCF using spring steel with bainitic and martensitic structures and bearing steel data. This study analyzed the characteristics of microstructure transformation associated with the heat treatment cycles and studied and evaluated the fatigue strength characteristics because of the UNSM in terms of fracture mechanics method and fracture surface analysis through electron backscatter diffraction, scanning electron microscopy fracture analysis, and energy-dispersive spectroscopy analysis. The fatigue limit of UNSM-treated spring steel was improved significantly by approximately 33% to 50% compared to the fatigue test results of the untreated material in the VHCF. In the long life range of bainized spring steel, fish-eye cracks appear in the form of the fine granular area, and fatigue cracks occur in the form of fish-eye cracks that occur in the bainite facet and matrix, resulting in a significant increase in fatigue strength and fatigue life.

키워드

과제정보

This study was conducted with support from the 2024 Korea Research Institute of Standards and Science's hydrogen station reliability evaluation technology development funds. (KRISS-2024-GP2024-0010).

참고문헌

  1. Chai, G. (2006). The formation of subsurface non-defect fatigue crack origins. International Journal of Fatigue, 28(11), 1533-1539. https://doi.org/10.1016/j.ijfatigue.2005.06.060
  2. Kitagawa, H., Takahashi, S., Suh, C. M., & Miyashita, S. (1979). Quantitative analysis of fatigue process-microcracks and slip lines under cyclic strains. ASTM International, 678, 420-449. https://doi.org/10.1520/STP35901S
  3. Kouters, M. H. M., Slot, H. M., van Zwieten, W., van der Veer, J. (2014), The influence of hydrogen on the fatigue life of metallic leaf spring components in a vacuum environment. International Journal of Fatigue, 59, 309-314,. https://doi.org/10.1016/j.ijfatigue.2013.09.013
  4. Nakasone, Y., & Hara, H. (2004). FEM simulation of growth of fish-eye cracks in the very high cycle fatigue of a high strength steel SUJ2. Proceeings of 3rd International Conferece on Very High Cycle Fatigue (VHCF-3), 40-47.
  5. Nahm, S. H., Suh, C. M., & Pyun, Y. S. (2018a). A study on the very high cycle fatigue and fracture behavior of bearing steel by ultrasonic nanocrystal surface modification. Transactions of the Korean Society of Mechanical Engineers. A, 42(6), 513-521.
  6. Nahm, S. H., Suh, M. S., Suh, C. M., & Pyun, Y. S. (2018b). Characteristics of inclusions of bearing steels and fish-eye crack mechanism. Transactions of the Korean Society of Mechanical Engineers A, 42(5), 419-427.
  7. Nie, Y. H., Fu, W. T., Hui, W. J., Dong, H., & Weng, Y. Q. (2009). Very high cycle fatigue behaviour of 2000-MPa ultra-high-strength spring steel with bainite--martensite duplex microstructure. Fatigue & Fracture of Engineering Materials & Stuctures, 32, 189 -196. https://doi.org/10.1111/j.1460-2695.2008.01319.x
  8. Pyun, Y. S., Suh, C. M., Yamaguchi, T., Im, J. S., Kim, J. H., Amanov, A., & Park, J. H. (2012). Fatigue characteristics of SAE52100 steel via ultrasonic nanocrystal surface modification technology. Journal of Nanoscience and Nanotechnology, 12, 6089-6095.
  9. Sakai, T., Takeda, M., Shiozawa, K., Ochi, Y., Nakajima, M., Nakamura, T., & Oguam, N. (2000). Experimental reconfirmation of characteristic S-N property for high cabon chromium bearing steel in wide life region in rotating bending. Journal of the Society of Materials Science, 49(7), 779-785. https://doi.org/10.2472/jsms.49.779
  10. Sourmail, T., Caballero, F. G., Garcia-Mateo, C., Smanio, V., Ziegler, C., Kuntz, M., Elvira, R., Leiro, A., Vuorinen, E., & Teeri, T. (2013). Evaluation of potential of high Si high C steel nanostructured bainite for wear and fatigue applications. Materials Science and Technology, 29(10), 1166-1173. https://doi.org/10.1179/1743284713Y.0000000242
  11. Suh, C. M., Cho, S. A., Pyun, Y. S., & Suh, M. S. (2011a). Variation of axial tension-compression fatigue characteristics by UNSM on Ti-6Al-4V. Journal of Ocean Engineering and Technology, 25(6), 42-48. https://doi.org/10.5574/KSOE.2011.25.6.042
  12. Suh, C. M., Lee, M. H., Pyun, Y. S. (2010). Fatigue characteristics of SKD-61 by ultrasonic nanocrystal surface modification technology under static load variation. International Journal of Modern Physics B, 24(15-16), 2645-2650. https://doi.org/10.1142/S0217979210065404
  13. Suh, C. M., Kitagawa, H.(1987). Crack growth behaviour of fatigue microcracks in low carbon steels. Fatigue & Fracture of Engineering Materials & Stuctures, 9(6), 409-424. https://doi.org/10.1111/j.1460-2695.1987.tb00468.x
  14. Suh, C. M., & Pyun, Y. S. (2011). Improvement of VHCF properties of AISI 1045, 4137, 52100 & H13 steel by UNSM treatment. Proceeding of Spring Conference of The Korean Society of Mechanical Engineers, 193-198.
  15. Suh, C. M., Pyun, Y. S., & Suh, M. S. (2011b). Variation of rotating bending fatigue characteristics by UNSM on Ti-6Al-4V. Journal of Ocean Engineering and Technology, 25(6), 49-55. https://doi.org/10.5574/KSOE.2011.25.6.049
  16. Suh, C. M., Song, G. H. Suh, M. S., & Pyun, Y.S. (2007). Fatigue and mechanical characteristic of nano-structured tool steel by ultrasonic cold forging technology. Materials Science and Engineering A, 443(1-2), 101-106. https://doi.org/10.1016/j.msea.2006.08.066
  17. Suh, C. M., Suh, M. S., Hwang, N. S. (2011c). Growth behaviours of small surface fatigue crack in AISI 304 steel. Fatigue & Fracture of Engineering Materials & Stuctures, 35(1), 22-29. https://doi.org/10.1111/j.1460-2695.2011.01623.x
  18. Suh, M. S., Nahm, S. H., Suh, C. M., Lee, S. B. (2021). Fracture behaviors at inclusions of very-high-cycle fatigue in newly developed clean bearing steel. International Journal of Modern Physics B, 35(26), 2150268. https://doi.org/10.1142/S0217979221502684
  19. Suh, M. S., Suh, C. M., & Pyun, Y.S. (2013). Very high cycle fatigue characteristics of a chrome-molybdenum steel treated by ultrasonic nanocrystal surface modification technique. Fatigue & Fracture of Engineering Materials & Stuctures, 36(8), 769-778. https://doi.org/10.1111/ffe.12045
  20. Suzuki, T., & Furuhara T. (2009). Bainite structures and mechanical properties of SUP12 spring steel. Transactions of Japan Society of Spring Engineers, 54, 27-33.
  21. Wei, D. Y., Gu, J. L., Fang, H. S., Bai, B. Z., & Yang Z. G. (2004). Fatigue behavior of 1500 MPa bainite/martensite duplex-phase high strength steel. International Journal of Fatigue, 26(4), 437-442. https://doi.org/10.1016/j.ijfatigue.2003.06.003