DOI QR코드

DOI QR Code

Experimental Investigation on the Drift and Collision of Containers Induced by Tsunami Action on a Wave Absorbing Revetment

  • Woo-Dong Lee (Department of Ocean Civil Engineering, Gyeongsang National University) ;
  • Taeyoon Kim (Department of Fire Protection Engineering, Pukyong National University) ;
  • Jiwon Kim (Harbor Department, Yooshin Engineering Corporation) ;
  • Seon-Ki Kim (Construction Supervision Department, Dongsung Engineering Co., Ltd.) ;
  • Hyeseong Oh (Department of Ocean Civil Engineering, Graduate School, Gyeongsang National University) ;
  • Taegeon Hwang (Department of Ocean Civil Engineering, Graduate School, Gyeongsang National University)
  • Received : 2024.08.22
  • Accepted : 2024.09.20
  • Published : 2024.10.31

Abstract

This study examined the collision dynamics between tsunami-driven drifting containers and port cranes, prompted by risks from the recent 7.6 magnitude earthquake and tsunami off Noto Peninsula, Japan. Hydraulic experiments were conducted to analyze container drift and collision forces using motion analysis software (DIPP-Motion) and a load cell installed on a crane leg model. The key parameters included the tsunami wave height, container weight (empty and loaded), initial position, and revetment type. The results suggested that higher tsunami wave heights led to more extraordinary inundation, allowing containers to float more efficiently, reducing bottom friction, and increasing drift speed and collision forces. The collision speeds ranged from 1.59 to 2.48 m/s, with collision forces of 45.18 to 77.68 N, representing increases of 6.45 to 15.58 times than no object. Heavier containers required deeper water to float, resulting in lower drift and collision speeds (0.88-0.89 times that of lighter containers). The wave-absorbing revetment caused higher flow velocities, producing collision speeds and forces 1.32-1.48 times greater than the vertical revetment. These findings highlight the importance of considering the tsunami magnitude, container weight, initial position, and revetment type in design, with face-to-face contact conditions crucial for estimating the maximum collision forces and preventing future tsunami damage.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (RS-2022-00144263, RS-2024-00356327).

References

  1. ASCE. (2022). Minimum design loads and associated criteria for buildings and other structures. American Society of Civil Engineers.
  2. Charvet, I., Suppasri, A., Kimura, H., Sugawara, D., & Imamura, F. (2015). A multivariate generalized linear tsunami fragility model for Kesennuma city based on maximum flow depths, velocities and debris impact, with evaluation of predictive accuracy. Natural Hazards, 79, 2073-2099.
  3. Como, A., & Mahmoud, H. (2013). Numerical evaluation of tsunami debris impact loading on wooden structural walls. Engineering Structures, 56, 1249-261.
  4. de Costa, R., Iwata, A., & Tanaka, N. (2019). Tsunami generated large wooden debris movement considering hybrid structures. Journal of Japan Society of Civil Engineers, Ser. B1, 75(2), I_727-I_732. https://doi.org/10.2208/jscejhe.75.2_I_727
  5. Dean, R. G., & Dalrymple, R. A. (1991). Water wave mechanics for engineers and scientists (Vol. 2). World Scientific Publishing Company.
  6. Derschum, C., Nistor, I., Stolle, J., & Goseberg, N. (2018). Debris impact under extreme hydrodynamic conditions part 1: Hydrodynamics and impact geometry. Coastal Engineering, 141, 24-35. https://doi.org/10.1016/j.coastaleng.2018.08.01
  7. DITECT. (2024). 2D/3D motion analysis sofware (DIPP-Motion V). Digital Image Technology Corporation. https://www.ditect.co.jp/en/software/dipp_motionv.html
  8. Hwang, T., Kim, J., Lee, D.H., & Lee, J.C. (2023). Location tracking of drifting container by solitary wave load using a motion analysis program. Journal of Ocean Engineering and Technology, 37(4), 158-163. https://doi.org/10.26748/KSOE.2023.023
  9. Hwang, T., Kim, T., Choi, S., Ko, C., & Lee, W.D. (2022). On applicability of LS-DYNA for collision analysis of drifting objects. Journal of Coastal Disaster Prevention, 9(2), 133-143. https://doi.org/10.20481/kscdp.2022.9.2.133
  10. Hwang, T., Kim, T., Jin, H., Kim, Y., & Lee, W.D. (2024a). Drift behavior of containers caused by solitary wave inundation on wave absorbing revetment. Journal of Coastal Disaster Prevention, 11(1), 11-20. https://doi.org/10.20481/kscdp.2024.11.1.11
  11. Hwang, T., Kim, T., Kim, J., Kim, Y., & Lee, W.D. (2024b). Effects of floating states on collision forces of drifting containers caused by solitary wave inundation. Journal of Earthquake and Tsunami, 2450010. https://doi.org/110.1142/S1793431124500106
  12. Kaida, H., Tomita, T., Yoshimura, S., & Kihara, N. (2024). Review of evaluation of tsunami-induced debris collision force. Coastal Engineering Journal, 1-27. https://doi.org/10.1080/21664250.2024.2341471
  13. Katell, G., & Eric, B. (2002). Accuracy of solitary wave generation by a piston wave maker. Journal of hydraulic research, 40(3), 321-331. https://doi.org/10.1080/00221680209499946
  14. Kharade, A.S., & Kapadiya, S.V. (2013). The impact analysis of RC structures under the influence of tsunami generated debris. International Journal of Engineering Research and Technology, 2(1), 1-10.
  15. KHOA. (2024). Coastline survey. Korea Hydrographic and Oceanographic Agency. https://www.khoa.go.kr/kcom/cnt/selectContentsPage.do?cntId31406000
  16. Kihara, N., & Kaida, H. (2019). Applicability of tracking simulations for probabilistic assessment of floating debris collision in tsunami inundation flow. Coastal Engineering Journal, 62(1), 69-84.
  17. Kim, T., Hwang, T., Baek, S., Hong, S., Kim, J., & Lee, W. D. (2023). Experimental investigations using computer vision for debris motion generated by solitary waves. Journal of Earthquake and Tsunami, 17(4), 2350016. https://doi.org/10.1142/S1793431123500161
  18. Kimoto, E., & Tomita. N., (2021). Experimental study on the effect of initial setup angle of tsunami debris object on its motion. Journal of Japan Society of Civil Engineers, Ser. B, 77(2), I_115-I_120.
  19. KMA. (2024). 2024 동해안 지진해일 분석보고서 [2024 eastern coast tsunami report]. Korea Meteorological Administration. https://www.kma.go.kr/download_01/tsunami/tsunami_report_2024.pdf
  20. Kosbab, B.D. (2010). Seismic performance evaluation of port container cranes allowed to uplift. Georgia Institute of Technology. http://hdl.handle.net/1853/33921
  21. Krautwald, C., Stolle, J., Robertson, I., Achiari, H., Mikami, T., Nakamura, R., Takabatake, T., Nishida, Y., Shibayama, T., Esteban, M., Goseberg, N., & Nistor, I. (2021). Engineering lessons from september 28, 2018 Indonesian tsunami: Scouring mechanisms and effects on infrastructure. Journal of Waterway, Port, Coastal, and Ocean Engineering, 147(2), 04020056. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000620
  22. Krautwald, C., Von Haefen, H., Niebuhr, P., Voegele, K., Schuerenkamp, D., Sieder, M., & Goseberg, N. (2022). Large-scale physical modeling of broken solitary waves impacting elevated coastal structures. Coastal Engineering Journal, 64(1), 169-189. https://doi.org/10.1080/21664250.2021.2023380
  23. Lee, W.D., Choi, S., Kim, T., & Yeom, G.-S. (2022a). Comparison of solitary wave overtopping characteristics between vertical and wave absorbing revetments. Ocean Engineering, 256, 111542. https://doi.org/10.1016/j.oceaneng.2022.111542
  24. Lee, W.D., Hwang, T., & Kim, T. (2022b). Inundation characteristics of solitary waves according to revetment type. Water, 14(23), 3814. https://doi.org/10.3390/w14233814
  25. Lee, W.D., Lee, S.Y., Park, J.R., & Hwang, T. (2024). Collision characteristics according to contact conditions between drifting objects and Fixed Structures in the Coastal Zone. Journnal of Coastal Research, 116(SI), 21-25. https://doi.org/10.2112/JCR-SI116-005.1
  26. Lee, W.D., Yeom, G.S., Kim, J., Lee, S., & Kim, T. (2022c). Runup characteristics of a tsunami-like wave on a slope beach. Ocean Engineering, 256(1), 111897. https://doi.org/10.1016/j.oceaneng.2022.111897
  27. Miyokawa, E., Minakawa, Y., Nakamura, G., Okuda, Y., Ikesue, S., Hirai, T., & Toita, T. (2017). Study of the impact force of tsunami debris. Proceedings of the 24th Conference on Structural Mechanics in Reactor Technology, 25-27.
  28. Naito, C., Cercone, C., Riggs, H. R., & Cox, D. (2014). Procedure for site assessment of the potential for tsunami debris impact. Journal of Waterway, Port, Coastal, and Ocean Engineering, 140(2), 223-232. https://doi.org/10.1061/(ASCE)WW.1943-5460.00002
  29. NOAA. (2024). National Geophysical Data Center / World Data Service: NCEI/WDS Global Historical Tsunami Database. NOAA National Centers for Environmental Information. National Oceanic and Atmospheric Administration. https://www.ngdc.noaa.gov/hazel/view/hazards/tsunami/runup-data/gov/hazel/view/hazards/tsunami/runup-data/
  30. Oda, Y., Honda, T., & Hashimoto, T. (2020). Experimental study on waterborne debris impact acting on tsunami seawall. Doboku Gakkai Ronbunshu B2. Kaigan Kogaku (Online), 76(2), I.673-I.678. https://doi.org/10.2208/kaigan.76.2_I_673
  31. Palermo, D., Nistor, I., Saatcioglu, M., & Ghobarah, A. (2013). Impact and damage to structures during the 27 February 2010 Chile tsunami. Canadian Journal of Civil Engineering, 40(8), 750-758. https://doi.org/10.1139/cjce-2012-0553
  32. Rossetto, T., Peiris, N., Pomonis, A., Wilkinson, S.M., Del Re, D., Koo, R., & Gallocher, S. (2007). The Indian Ocean tsunami of december 26, 2004: observations in Sri Lanka and Thailand. Natural Hazards, 42, 105-124. https://doi.org/10.1007/s11069-006-9064-3
  33. Seo, M., Yeom, G.S., Lee, C., & Lee, W.D. (2022). Numerical analyses on the formation, propagation, and deformation of landslide tsunami using LS-DYNA and NWT. Journal of Ocean Engineering and Technology, 36(1), 11-20. https://doi.org/10.26748/KSOE.2021.089
  34. Stolle, J. (2016). Experimental modelling of debris dynamics in tsunami-like flow conditions [Doctoral dissertation, Universite d'Ottawa/University of Ottawa].
  35. Stolle, J., Krautwald, C., Robertson, I., Achiari, H., Mikami, T., Nakamura, R., Takabatake, T., Nishida, Y., Shibayama, T., Esteban, M., Nistor, I., & Goseberg, N. (2020). Engineering lessons from the 28 September 2018 Indonesian tsunami: Debris loading. Canadian Journal of Civil Engineering, 47(1), 1-12. https://doi.org/10.1139/cjce-2019-0049
  36. A., Muhari, A., Ranasinghe, P., Mas, E., Shuto, N., Imamura, F., & Koshimura, S. (2012). Damage and reconstruction after the 2004 Indian Ocean tsunami and the 2011 Great East Japan tsunami. Journal of Natural Disaster Science, 34(1), 19-39. https://doi.org/10.2328/jnds.34.19
  37. Takahashi, S., Kuriyama, Y., & Tomita, T. (2011). Urgent survey for 2011 great east Japan earthquake and tsunami disaster in ports and coasts-Part I (Tsunami). Port and Air Port Research Institute. https://www.weather.gov/media/itic-car/Tohokutsunamiportssurvey.pdf
  38. Tanaka, N., & Onai, A. (2017). Mitigation of destructive fluid force on buildings due to trapping of floating debris by coastal forest during the Great East Japan tsunami. Landscape and Ecological Engineering, 13, 131-144. https://doi.org/10.1007/s11355-016-0308-4
  39. Yao, Y., Huang, Z., Lo, E.Y., & Shen, H.T. (2014). A preliminary laboratory study of motion of floating debris generated by solitary waves running up a beach. Journal of Earthquake and Tsunami, 8(3), 1440006. https://doi.org/10.1142/S1793431114400065