Acknowledgement
This research was supported by Korea Institute of Marine Science & Technology Promotion(KIMST) funded by the Ministry of Oceans and Fisheries(2520000243), and the Korea Research Institute of Ships and Ocean engineering, grant from Endowment Project of "Technology Development of Onboard Carbon Capture and Storage System and Pilot Test" funded by Ministry of Oceans and Fisheries (PES5110). The Research Institute of Marine Systems Engineering and Institute of Engineering Research at Seoul National University provided research facilities.
References
- Alabdulkarem, A., Hwang, Y., & Radermacher, R. (2012). Development of CO2 liquefaction cycles for CO2 sequestration. Applied Thermal Engineering, 33-34, 144-156. https://doi.org/10.1016/j.applthermaleng.2011.09.027
- Aliyon, K., Mehrpooya, M., & Hajinezhad, A. (2020). Comparison of different CO2 liquefaction processes and exergoeconomic evaluation of integrated CO2 liquefaction and absorption refrigeration system. Energy Conversion and Management, 211, 112752. https://doi.org/https://doi.org/10.1016/j.enconman.2020.112752
- Chen, F., & Morosuk, T. (2021). Exergetic and economic evaluation of CO2 liquefaction processes. Energies, 14(21), 7174. https://www.mdpi.com/1996-1073/14/21/7174 1073/14/21/7174
- Chu, B., Chang, D., & Chung, H. (2012). Optimum liquefaction fraction for boil-off gas reliquefaction system of semi-pressurized liquid CO2 carriers based on economic evaluation. International Journal of Greenhouse Gas Control, 10, 46-55. https://doi.org/10.1016/j.ijggc.2012.05.016
- Decarre, S., Berthiaud, J., Butin, N., & Guillaume-Combecave, J.-L. (2010). CO2 maritime transportation. International Journal of Greenhouse Gas Control, 4(5), 857-864. https://doi.org/10.1016/j.ijggc.2010.05.005
- Deng, H., Roussanaly, S., & Skaugen, G. (2019). Techno-economic analyses of CO2 liquefaction: Impact of product pressure and impurities. International Journal of Refrigeration, 103, 301-315. https://doi.org/https://doi.org/10.1016/j.ijrefrig.2019.04.011
- IRENA. (2022), Global Hydrogen Trade to Meet the 1.5 ℃ Climate Goal. Vol. Part 1.
- Jackson, S., & Brodal, E. (2019). Optimization of the CO2 Liquefaction Process-Performance Study with Varying Ambient Temperature. Applied Sciences, 9(20), 4467. https://www.mdpi.com/2076-3417/9/20/4467
- S. H., & Kim, M. S. (2015). Effects of impurities on reliquefaction system of liquefied CO2 transport ship for CCS. International Journal of Greenhouse Gas Control, 43, 225-232. https://doi.org/10.1016/j.ijggc.2015.10.011
- Kennedy, J., & Eberhart, R. (1995, November 27-December 1). Particle swarm optimization. In Proceedings of ICNN'95 - International Conference on Neural Networks (Vol. 4, pp. 1942-1948). IEEE. https://doi.org/1109/ICNN.1995.488968 1109/ICNN.1995.488968
- Khan, M. S., & Lee, M. (2013). Design optimization of single mixed refrigerant natural gas liquefaction process using the particle swarm paradigm with nonlinear constraints. Energy, 49, 146-155. https://doi.org/10.1016/j.energy.2012.11.028
- Lee, J., Son, H., Oh, J., Yu, T., Kim, H., & Lim, Y. (2024). Advanced process design of subcooling reliquefaction system considering storage pressure for a liquefied CO2 carrier. Energy, 293, 130556. https://doi.org/https://doi.org/10.1016/j.energy.2024.130556
- Lee, J., Son, H., Yu, T., Oh, J., Park, M. G., & Lim, Y. (2023). Process design of advanced LNG subcooling system combined with a mixed refrigerant cycle. Energy, 278(Part A), 127892. https://doi.org/https://doi.org/10.1016/j.energy.2023.127892
- Lee, S. G., Choi, G. B., Lee, C. J., & Lee, J. M. (2017a). Optimal design and operating condition of boil-off CO2 reliquefaction process, considering seawater temperature variation and compressor discharge temperature limit. Chemical Engineering Research and Design, 124, 29-45. https://doi.org/10.1016/j.cherd.2017.05.029
- Lee, S. G., Choi, G. B., & Lee, J. M. (2015). Optimal design and operating conditions of the CO2 liquefaction process, considering variations in cooling water temperature. Industrial & Engineering Chemistry Research, 54(51), 12855-12866. https://doi.org/10.1021/acs.iecr.5b02391
- Lee, Y., Baek, K. H., Lee, S., Cha, K., & Han, C. (2017b). Design of boil-off CO2 reliquefaction processes for a large-scale liquid CO2 transport ship. International Journal of Greenhouse Gas Control, 67, 93-102. https://doi.org/10.1016/j.ijggc.2017.10.008
- Lu, J., Li, Y., Li, B., Yang, Q., & Deng, F. (2023). Research on reliquefaction of cargo BOG using liquid ammonia cold energy on CO2 transport ship. International Journal of Greenhouse Gas Control, 129, 103994. https://doi.org/10.1016/j.ijggc.2023.103994
- Moein, P., Sarmad, M., Ebrahimi, H., Zare, M., Pakseresht, S., & Vakili, S. Z. (2015). APCI- LNG single mixed refrigerant process for natural gas liquefaction cycle: Analysis and optimization. Journal of Natural Gas Science and Engineering, 26, 470-479. https://doi.org/10.1016/j.jngse.2015.06.040
- Seo, Y., You, H., Lee, S., Huh, C., & Chang, D. (2015). Evaluation of CO2 liquefaction processes for ship-based carbon capture and storage (CCS) in terms of life cycle cost (LCC) considering availability. International Journal of Greenhouse Gas Control, 35, 1-12. https://doi.org/10.1016/j.ijggc.2015.01.006
- Seo, Y., Huh, C., Lee, S., & Chang, D. (2016). Comparison of CO2 liquefaction pressures for ship-based carbon capture and storage (CCS) chain. International Journal of Greenhouse Gas Control, 52, 1-12. https://doi.org/10.1016/j.ijggc.2016.06.011
- Tsivintzelis, I., & Kontogeorgis, G. M. (2015). Modelling phase equilibria for acid gas mixtures using the CPA equation of state. Part V: Multicomponent mixtures containing CO2 and alcohols. The Journal of Supercritical Flluids, 104, 29-39. https://doi.org/10.1016/j.supflu.2015.05.015
- Xu, X., Liu, J., Jiang, C., & Cao, L. (2013). The correlation between mixed refrigerant composition and ambient conditions in the PRICO LNG process. Applied Energy, 102, 1127-1136. https://doi.org/10.1016/j.apenergy.2012.06.031
- Yoo, B.-Y. (2017). The development and comparison of CO2 BOG reliquefaction processes for LNG fueled CO2 carriers. Energy, 127, 186-197. https://doi.org/10.1016/j.energy.2017.03.073
- Zhang, J., Meerman, H., Benders, R., Faaij, A., (2020). Comprehensive reviewof current natural gas liquefaction processes on technical and economic performance. Applied Thermal Engineering, 166, 114736. https://doi.org/10.1016/j.applthermaleng.2019.114736