DOI QR코드

DOI QR Code

Optimization of BOG Reliquefaction Process of Carbon Dioxide Considering Nitrogen Content

  • Ijun Jeong (Department of Naval Architecture and Ocean Engineering, Seoul National University) ;
  • Youngsub Lim (Department of Naval Architecture and Ocean Engineering, Seoul National University)
  • Received : 2024.05.17
  • Accepted : 2024.08.29
  • Published : 2024.10.31

Abstract

As the importance of carbon capture and storage (CCS) technology increases for greenhouse gas reduction, CO2 transportation technology is also becoming crucial. Efficiently handling boil-off gas (BOG) generated during voyages is particularly important. This paper proposes a process incorporating two-stage separation and mixed refrigerants to reliquefy CO2 BOG containing nitrogen efficiently. This process was optimized based on specific power consumption (SPC) criteria and compared with the conventional single-stage separation using an ammonia refrigerant. The two-stage separation allows the removal of non-condensable gases, such as nitrogen, before expansion, and the use of mixed refrigerants enables more efficient heat exchange than ammonia refrigerants, improving the reliquefaction rate. As a result, the proposed process reduced SPC by up to 8.8 % with a nitrogen content of 5 mol% and up to 74.7 % with a nitrogen content of 15 mol%. In addition, the proposed process achieved a reliquefaction rate of over 74.2 % across all nitrogen content ranges of 5-15 mol%.

Keywords

Acknowledgement

This research was supported by Korea Institute of Marine Science & Technology Promotion(KIMST) funded by the Ministry of Oceans and Fisheries(2520000243), and the Korea Research Institute of Ships and Ocean engineering, grant from Endowment Project of "Technology Development of Onboard Carbon Capture and Storage System and Pilot Test" funded by Ministry of Oceans and Fisheries (PES5110). The Research Institute of Marine Systems Engineering and Institute of Engineering Research at Seoul National University provided research facilities.

References

  1. Alabdulkarem, A., Hwang, Y., & Radermacher, R. (2012). Development of CO2 liquefaction cycles for CO2 sequestration. Applied Thermal Engineering, 33-34, 144-156. https://doi.org/10.1016/j.applthermaleng.2011.09.027
  2. Aliyon, K., Mehrpooya, M., & Hajinezhad, A. (2020). Comparison of different CO2 liquefaction processes and exergoeconomic evaluation of integrated CO2 liquefaction and absorption refrigeration system. Energy Conversion and Management, 211, 112752. https://doi.org/https://doi.org/10.1016/j.enconman.2020.112752
  3. Chen, F., & Morosuk, T. (2021). Exergetic and economic evaluation of CO2 liquefaction processes. Energies, 14(21), 7174. https://www.mdpi.com/1996-1073/14/21/7174 1073/14/21/7174
  4. Chu, B., Chang, D., & Chung, H. (2012). Optimum liquefaction fraction for boil-off gas reliquefaction system of semi-pressurized liquid CO2 carriers based on economic evaluation. International Journal of Greenhouse Gas Control, 10, 46-55. https://doi.org/10.1016/j.ijggc.2012.05.016
  5. Decarre, S., Berthiaud, J., Butin, N., & Guillaume-Combecave, J.-L. (2010). CO2 maritime transportation. International Journal of Greenhouse Gas Control, 4(5), 857-864. https://doi.org/10.1016/j.ijggc.2010.05.005
  6. Deng, H., Roussanaly, S., & Skaugen, G. (2019). Techno-economic analyses of CO2 liquefaction: Impact of product pressure and impurities. International Journal of Refrigeration, 103, 301-315. https://doi.org/https://doi.org/10.1016/j.ijrefrig.2019.04.011
  7. IRENA. (2022), Global Hydrogen Trade to Meet the 1.5 ℃ Climate Goal. Vol. Part 1.
  8. Jackson, S., & Brodal, E. (2019). Optimization of the CO2 Liquefaction Process-Performance Study with Varying Ambient Temperature. Applied Sciences, 9(20), 4467. https://www.mdpi.com/2076-3417/9/20/4467
  9. S. H., & Kim, M. S. (2015). Effects of impurities on reliquefaction system of liquefied CO2 transport ship for CCS. International Journal of Greenhouse Gas Control, 43, 225-232. https://doi.org/10.1016/j.ijggc.2015.10.011
  10. Kennedy, J., & Eberhart, R. (1995, November 27-December 1). Particle swarm optimization. In Proceedings of ICNN'95 - International Conference on Neural Networks (Vol. 4, pp. 1942-1948). IEEE. https://doi.org/1109/ICNN.1995.488968 1109/ICNN.1995.488968
  11. Khan, M. S., & Lee, M. (2013). Design optimization of single mixed refrigerant natural gas liquefaction process using the particle swarm paradigm with nonlinear constraints. Energy, 49, 146-155. https://doi.org/10.1016/j.energy.2012.11.028
  12. Lee, J., Son, H., Oh, J., Yu, T., Kim, H., & Lim, Y. (2024). Advanced process design of subcooling reliquefaction system considering storage pressure for a liquefied CO2 carrier. Energy, 293, 130556. https://doi.org/https://doi.org/10.1016/j.energy.2024.130556
  13. Lee, J., Son, H., Yu, T., Oh, J., Park, M. G., & Lim, Y. (2023). Process design of advanced LNG subcooling system combined with a mixed refrigerant cycle. Energy, 278(Part A), 127892. https://doi.org/https://doi.org/10.1016/j.energy.2023.127892
  14. Lee, S. G., Choi, G. B., Lee, C. J., & Lee, J. M. (2017a). Optimal design and operating condition of boil-off CO2 reliquefaction process, considering seawater temperature variation and compressor discharge temperature limit. Chemical Engineering Research and Design, 124, 29-45. https://doi.org/10.1016/j.cherd.2017.05.029
  15. Lee, S. G., Choi, G. B., & Lee, J. M. (2015). Optimal design and operating conditions of the CO2 liquefaction process, considering variations in cooling water temperature. Industrial & Engineering Chemistry Research, 54(51), 12855-12866. https://doi.org/10.1021/acs.iecr.5b02391
  16. Lee, Y., Baek, K. H., Lee, S., Cha, K., & Han, C. (2017b). Design of boil-off CO2 reliquefaction processes for a large-scale liquid CO2 transport ship. International Journal of Greenhouse Gas Control, 67, 93-102. https://doi.org/10.1016/j.ijggc.2017.10.008
  17. Lu, J., Li, Y., Li, B., Yang, Q., & Deng, F. (2023). Research on reliquefaction of cargo BOG using liquid ammonia cold energy on CO2 transport ship. International Journal of Greenhouse Gas Control, 129, 103994. https://doi.org/10.1016/j.ijggc.2023.103994
  18. Moein, P., Sarmad, M., Ebrahimi, H., Zare, M., Pakseresht, S., & Vakili, S. Z. (2015). APCI- LNG single mixed refrigerant process for natural gas liquefaction cycle: Analysis and optimization. Journal of Natural Gas Science and Engineering, 26, 470-479. https://doi.org/10.1016/j.jngse.2015.06.040
  19. Seo, Y., You, H., Lee, S., Huh, C., & Chang, D. (2015). Evaluation of CO2 liquefaction processes for ship-based carbon capture and storage (CCS) in terms of life cycle cost (LCC) considering availability. International Journal of Greenhouse Gas Control, 35, 1-12. https://doi.org/10.1016/j.ijggc.2015.01.006
  20. Seo, Y., Huh, C., Lee, S., & Chang, D. (2016). Comparison of CO2 liquefaction pressures for ship-based carbon capture and storage (CCS) chain. International Journal of Greenhouse Gas Control, 52, 1-12. https://doi.org/10.1016/j.ijggc.2016.06.011
  21. Tsivintzelis, I., & Kontogeorgis, G. M. (2015). Modelling phase equilibria for acid gas mixtures using the CPA equation of state. Part V: Multicomponent mixtures containing CO2 and alcohols. The Journal of Supercritical Flluids, 104, 29-39. https://doi.org/10.1016/j.supflu.2015.05.015
  22. Xu, X., Liu, J., Jiang, C., & Cao, L. (2013). The correlation between mixed refrigerant composition and ambient conditions in the PRICO LNG process. Applied Energy, 102, 1127-1136. https://doi.org/10.1016/j.apenergy.2012.06.031
  23. Yoo, B.-Y. (2017). The development and comparison of CO2 BOG reliquefaction processes for LNG fueled CO2 carriers. Energy, 127, 186-197. https://doi.org/10.1016/j.energy.2017.03.073
  24. Zhang, J., Meerman, H., Benders, R., Faaij, A., (2020). Comprehensive reviewof current natural gas liquefaction processes on technical and economic performance. Applied Thermal Engineering, 166, 114736. https://doi.org/10.1016/j.applthermaleng.2019.114736