과제정보
This work was supported by the Korea Maritime & Ocean University Research Fund in 2024.
참고문헌
- American Bureau of Shipping (ABS). (2004). Spectral-based fatigue analysis for floating production, storage and offloading (FPSO) installations. ABS.
- American Bureau of Shipping (ABS). (2017). Gudance noties on springing assessment for contaniner carriers and ORE carriers. ABS.
- Barhoumi, M., & Storhaug, G. (2014). Assessment of whipping and springing on a large container vessel. International Journal of Naval Architecture and Ocean Engineering, 6(2), 442-458. https://doi.org/10.2478/IJNAOE-2013-0191
- Bureau Veritas (BV). (2015). Whipping and Springing Assessment (Rule Note NR 583 DT R00 E). BV.
- Det Norske Veritas (DNV). (2021a). Fatigue and ultimate strength assessment of container ships including whipping and springing (DNV-CG-0153). Class Guideline, DNV.
- Det Norske Veritas (DNV). (2021b). Fatigue assessment of ship structures (DNV-CG-0129). Class Guideline, DNV.
- Det Norske Veritas (DNV). (2021c). Wave loads (DNV-CG-0130). Class Guideline, DNV.
- Drummen, I., Storhaug, G., & Moan, T. (2008). Experimental and numerical investigation of fatigue damage due to wave-induced vibrations in a containership in head seas. Journal of Marine Science and Technology, 13(4), 428-445. https://doi.org/10.1007/s00773-008-0006-5
- Hirdaris, S., Price, W., & Temarel, P. (2003). Two-and three-dimensional hydroelastic modelling of a bulker in regular waves. Marine Structures, 16(8), 627-658. https://doi.org/10.1016/j.marstruc.2004.01.005
- Jensen, J. J., & Dogliani, M. (1996). Wave-induced ship full vibrations in stochastic seaways. Marine Structures, 9(3-4), 353-387. https://doi.org/10.1016/0951-8339(95)00031-3
- Kahl, A., Fricke, W., Paetzold, H., & von Selle, H. (2014). Whipping investigations based on large-scale measurements and experimental fatigue testing. Proceedings of the 24th International Ocean and Polar Engineering Conference, ISOPE-I-14-382.
- Kim, K.-H., Bang, J.-S., Kim, J.-H., Kim, Y., Kim, S.-J., & Kim, Y. (2013). Fully coupled BEM-FEM analysis for ship hydroelasticity in waves. Marine Structures, 33, 71-99. https://doi.org/10.1016/j.marstruc.2013.04.004
- Kim, Y., Kim, B.-H., Choi, B.-K., Park, S.-G., & Malenica, S. (2018a). Analysis on the full scale measurement data of 9400 TEU container Carrier with hydroelastic response. Marine Structures, 61, 25-45. https://doi.org/10.1016/j.marstruc.2018.04.009
- Kim, Y., Kim, B.-H., Park, S.-G., Choi, B.-K., & Malenica, S. (2018b). On the torsional vibratory response of 13000 TEU container carrier-full scale measurement data analysis. Ocean Engineering, 158, 15-28. https://doi.org/10.1016/j.oceaneng.2018.03.065
- Kim, Y., Kim, K.-H., & Kim, Y. (2009). Springing analysis of a seagoing vessel using fully coupled BEM-FEM in the time domain. Ocean Engineering, 36(11), 785-796. https://doi.org/10.1016/j.oceaneng.2009.04.002
- Korean Register (KR). (2018). Guidelines for Fatigue Strength Assessment Including Springing. KR.
- Lloyd's Register (LR). (2002). Fatigue Design Assessment Level 3 Guidance on Direct Calculations. LR.
- Lloyd's Register (LR). (2021). Structural Design Assessment : Primary Structure of Container Ships. LR.
- Lloyd's Register (LR). (2022). Global Design Loads of Container Ships and Other Ships Prone to Whipping and Springing. LR.
- Malenica, S., Molin, B., Remy, F., & Senjanovic, I. (2003). Hydroelastic response of a barge to impulsive and non-impulsive wave loads. Proceedings of the 3rd International Conference on Hydroelasticity in Marine Technology, 107-115. https://www.croris.hr/crosbi/publikacija/prilog-skup/493005
- Moe, E. (2005). Full scale measurements of the wave induced hull girder vibrations of an ore carrier trading in the North Atlantic. Transactions of Royal Institution of Naval Architects.
- Park, J.-B., Choung, J., & Kim, K.-S. (2014). A new fatigue prediction model for marine structures subject to wide band stress process. Ocean Engineering, 76, 144-151. https://doi.org/10.1016/j.oceaneng.2013.11.002
- Park, J. B., & Kim, D. (2024). A comparison study on the longitudinal fatigue life distribution of a container ship applying hydroelastic fatigue analysis techniques. Proceedings of the Korean Association of Ocean Science and Technology Societies 2024 Spring Conference. Jeju, April.
- Price, W., & Temarel, P. (1982). The influence of hull flexibility in the antisymmetric dynamic behaviour of ships in waves. International Shipbuilding Progress, 29(340), 318-326. https://doi.org/10.3233/ISP-1982-2934001
- Renaud, M., De Lorgeril, E., Boutillier, J., & Gerad, L. (2013). Fatigue and weather on ultra large containerships. Proceedings of the 12th International Symposium on Practical Design of Ships and Other Floating Structures (PRADS2013), Changwon, Korea (pp. 384-394).
- Shin, K.-H., Jo, J.-W., Hirdaris, S. E., Jeong, S.-G., Park, J. B., Lin, F., Wang, Z., & White, N. (2015). Two-and three-dimensional springing analysis of a 16,000 TEU container ship in regular waves. Ships and Offshore Structures, 10(5), 498-509. https://doi.org/10.1080/17445302.2015.1014255
- Storhaug, G. (2014). The measured contribution of whipping and springing on the fatigue and extreme loading of container vessels. International Journal of Naval Architecture and Ocean Engineering, 6(4), 1096-1110. https://doi.org/10.2478/IJNAOE-2013-0233
- Storhaug, G., Malenica, S., Choi, B.-K., Zhu, S., & Hermundstad, O. A. (2010). Consequence of whipping and springing on fatigue and extreme loading for a 13000TEU container vessel based on model tests. In 11th International Symposium on practical design of ships and other floating structures, Rio de Janeiro, Brazil (pp. 1201-1209)
- Wu, M., & Moan, T. (1996). Linear and nonlinear hydroelastic analysis of high-speed vessels. Journal of Ship Research, 40(02), 149-163. https://doi.org/10.5957/jsr.1996.40.2.149