DOI QR코드

DOI QR Code

Analysis of the Impact of Dynamic Operation of PEMFCs for Ship Applications

  • Jae Hong Kim (Department of Naval Architecture and Ocean Engineering, Pusan National University) ;
  • Seon Hyeong Lee (Department of Naval Architecture and Ocean Engineering, Pusan National University) ;
  • Jae Heon Kwon (Department of Naval Architecture and Ocean Engineering, Pusan National University) ;
  • Ryu Bin Kwon (Department of Naval Architecture and Ocean Engineering, Pusan National University) ;
  • Kwang Hyo Jung (Department of Naval Architecture and Ocean Engineering, Pusan National University) ;
  • Moonho Son (Carbon Reduction Department, Samsung Heavy Industries R&D Center) ;
  • Hyun Park (Department of Naval Architecture and Ocean Engineering, Pusan National University)
  • 투고 : 2024.08.29
  • 심사 : 2024.10.06
  • 발행 : 2024.10.31

초록

Dynamic responses of polymer electrolyte membrane fuel cells (PEMFC) were analyzed under varying loads to understand the performance of PEMFCs for ship applications. Experiments employing single cells were conducted under a static load with a constant current of 6.64 A and dynamic loads at a ramp rate of 2.5%/s and 5.0%/s, representing a simplified ship operation condition. Under the static load, the voltage drop was 0.054 V at 1.00 A/cm2 and was dominant below 0.40 A/cm2. In contrast, under the dynamic load (5.0%/s ramp rate), the voltage drop was 0.061 V at 1.00 A/cm2 and was dominant above 0.40 A/cm2, with similar behavior observed at the ramp rate of 2.5%/s. To compare performance across load conditions, degradation rates were calculated through linear regression of the voltage drop for each current density. The degradation rate at 1.00 A/cm2 was 0.143 mV/h under static load conditions and 0.174 mV/h under dynamic load conditions (ramp rate: 5.0%/s), indicating approximately 21% greater degradation rates than those observed under static load conditions. These experimental results provide foundational data for PEMFC performance analysis, particularly regarding performance degradation caused by dynamic loads in marine environments.

키워드

과제정보

This research was supported by Regional Innovation Strategy (RIS) through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (MOE) (2023RIS-007) and 2-Year Research Grant of Pusan National University.

참고문헌

  1. Bagherabadi, K. M., Skjong, S., Bruinsma, J., & Pedersen, E. (2022). System-level modeling of marine power plant with PEMFC system and battery. International Journal of Naval Architecture and Ocean Engineering, 14, 100487. https://doi.org/10.1016/j.ijnaoe.2022.100487
  2. Cheng, X., Chen, L., Peng, C., Chen, Z., Zhang, Y., & Fan, Q. (2003). Catalyst microstructure examination of PEMFC membrane electrode assemblies vs. time. Journal of the Electrochemical Society, 151(1), A48. https://doi.org/10.1149/1.1625944
  3. Chu, T., Wang, Q., Xie, M., Wang, B., Yang, D., Li, B., .Ming, P., & Zhang, C. (2022). Investigation of the reversible performance degradation mechanism of the PEMFC stack during long-term durability test. Energy, 258, 124747. https://doi.org/10.1016/j.energy.2022.124747
  4. ion mechanism of electrocatalyst during long-term operation of PEMFC . International Journal of Hydrogen Energy, 34(21), 8974-8981. https://doi.org/10.1016/j.ijhydene.2009.08.094
  5. Cleghorn, S. J. C., Mayfield, D. K., Moore, D. A., Moore, J. C., Rusch, G., Sherman, T. W., Sherman, T. W., & Beuscher, U. (2006). A polymer electrolyte fuel cell life test: 3 years of continuous operation. Journal of Power Sources, 158(1), 446-454. https://doi.org/10.1016/j.jpowsour.2005.09.062
  6. Elkafas, A. G., Rivarolo, M., Gadducci, E., Magistri, L., & Massardo, A. F. (2022). Fuel cell systems for maritime: a review of research development, commercial products, applications, and perspectives. Processes, 11(1), 97. https://doi.org/10.3390/pr11010097
  7. Gadducci, E., Lamberti, T., Rivarolo, M., & Magistri, L. (2022). Experimental campaign and assessment of a complete 240-kW Proton Exchange Membrane Fuel Cell power system for maritime applications. International Journal of Hydrogen Energy, 47(53), 22545-22558. https://doi.org/10.1016/j.ijhydene.2022.05.061
  8. Hassani, M., Rahgoshay, M., Rahimi-Esbo, M., & Dadashi Firouzjaei, K. (2020). Experimental study of oxidant effect on lifetime of PEM fuel cell. Hydrogen, Fuel Cell & Energy Storage, 7(1), 33-43. https://doi.org/10.22104/ijhfc.2020.4068.1202
  9. Hou, K. H., Lin, C. H., Ger, M. D., Shiah, S. W., & Chou, H. M. (2012). Analysis of the characterization of water produced from proton exchange membrane fuel cell (PEMFC) under different operating thermal conditions. International journal of hydrogen energy, 37(4), 3890-3896. https://doi.org/10.1016/j.ijhydene.2011.05.129
  10. International Electrotechnical Commission (IEC). (2017). IEC Technical Specification 62282-7-1 Fuel cell technologies - Part 7-1: Test methods - Single cell performance tests for polymer electrolyte fuel cells (PEFC). https://webstore.iec.ch/publication/31478
  11. Lee, G. N., Kim, J. M., Jung, K. H., Park, H., Jang, H. S., Lee, C. S., & Lee, J. W. (2022). Environmental life-cycle assessment of eco-friendly alternative ship fuels (MGO, LNG, and hydrogen) for 170 GT nearshore ferry. Journal of Marine Science and Engineering, 10(6), 755. https://doi.org/10.3390/jmse10060755
  12. Lee, G. Y., Jung, M. K., Ryoo, S. N., Park, M. S., Ha, S. C., & Kim, S. (2010). Development of cost innovative BPs for a PEMFC stack for a 1 kW-class residential power generator (RPG) system. International journal of hydrogen energy, 35(23), 13131-13136. https://doi.org/10.1016/j.ijhydene.2010.04.081
  13. Meng, K., Zhou, H., Chen, B., & Tu, Z. (2021). Dynamic current cycles effect on the degradation characteristic of a H2/O2 proton exchange membrane fuel cell. Energy, 224, 120168. https://doi.org/10.1016/j.energy.2021.120168
  14. Oh, S., Lee, M., Lee, H., Kim, W., Park, J. W., & Park, K. (2018). Performance comparison between stationary PEMFC MEA and automobile MEA under pure hydrogen supply condition. Korean Chemical Engineering Research, 56(4), 469-473. https://doi.org/10.9713/kcer.2018.56.4.469
  15. O'hayre, R., Cha, S. W., Colella, W., & Prinz, F. B. (2016). Fuel cell fundamentals. John Wiley & Sons. https://doi.org/10.1002/9781119191766
  16. Paperzh, K., Alekseenko, A., Pankov, I., & Guterman, V. (2024). Accelerated stress tests for Pt/C electrocatalysts: An approach to understanding the degradation mechanisms. Journal of Electroanalytical Chemistry, 952, 117972. https://doi.org/10.1016/j.jelechem.2023.117972
  17. Park, S. K., & Choe, S. Y. (2008). Dynamic modeling and analysis of a 20-cell PEM fuel cell stack considering temperature and two-phase effects. Journal of Power Sources, 179(2), 660-672. https://doi.org/10.1016/j.jpowsour.2008.01.029
  18. Saponaro, G., Stefanizzi, M., Torresi, M., & Camporeale, S. M. (2024). Analysis of the degradation of a Proton Exchange Membrane Fuel Cell for propulsion of a coastal vessel. International Journal of Hydrogen Energy, 61, 803-819. https://doi.org/10.1016/j.ijhydene.2024.02.349
  19. Tian, P. (2020). Performance prediction of PEM fuel cell using artificial neural network machine learning. University of California, Irvine.
  20. Wasterlain, S., Candusso, D., Hissel, D., Harel, F., Bergman, P., Menard, P., & Anwar, M. (2010). Study of temperature, air dew point temperature and reactant flow effects on PEMFC performances using electrochemical spectroscopy and voltammetry techniques. Journal of Power Sources, 195(4), 984-984. https://doi.org/10.1016/j.jpowsour.2009.08.084
  21. Zhan, Y., Zhu, J., Guo, Y., & Wang, H. (2008, October). Performance analysis and improvement of a proton exchange membrane fuel cell using comprehensive intelligent control. In 2008 international conference on electrical machines and systems (pp. 2378-2383). IEEE.
  22. Zuo, J., Lv, H., Zhou, D., Xue, Q., Jin, L., Zhou, W., Yang, D., & Zhang, C. (2021). Deep learning based prognostic framework towards proton exchange membrane fuel cell for automotive application. Applied Energy, 281, 115937. https://doi.org/10.1016/j.apenergy.2020.115937