DOI QR코드

DOI QR Code

Exploring the role of angiogenesis in fibrosis and malignant transformation in oral submucous fibrosis: a systematic review and meta-analysis

  • Keerthika R (Unit of Oral Pathology and Microbiology, Faculty of Dental Sciences, Institute of Medical Sciences, Banaras Hindu University) ;
  • Akhilesh Chandra (Unit of Oral Pathology and Microbiology, Faculty of Dental Sciences, Institute of Medical Sciences, Banaras Hindu University) ;
  • Dinesh Raja (Unit of Oral Pathology and Microbiology, Faculty of Dental Sciences, Institute of Medical Sciences, Banaras Hindu University) ;
  • Mahesh Khairnar (Unit of Public Health Dentistry, Faculty of Dental Sciences, Institute of Medical Sciences, Banaras Hindu University) ;
  • Rahul Agrawal (Unit of Oral Pathology and Microbiology, Faculty of Dental Sciences, Institute of Medical Sciences, Banaras Hindu University)
  • 투고 : 2024.03.15
  • 심사 : 2024.08.02
  • 발행 : 2024.10.31

초록

Angiogenesis is a crucial molecular driver of fibrosis in various inflammatory lesions. Oral submucous fibrosis (OSMF) is a chronic inflammatory fibrotic disorder with malignant potential. The angiogenetic pathways in OSMF remain obscure due to limited research, necessitating an in-depth review. This review aimed to illuminate the cryptic pathogenetic mechanisms of angiogenesis in the disease progression/fibrosis of OSMF and its malignant transformation, providing insights for improved treatment. Extensive literature searches were conducted across an array of databases until October 2023. Original research articles on angiogenesis in OSMF were included, and the risk of bias was assessed using the modified Newcastle-Ottawa scale. RevMan ver. 5.4 (Cochrane Collaboration) was used for data analysis. Thirty-four articles were included for qualitative synthesis and seven for quantitative analysis. Findings revealed that angiogenesis was significantly increased in early-stage OSMF but decreased as the disease advanced. It was also associated with the severity of epithelial dysplasia and malignant transformation. A random-effects model confirmed the upregulation of angiogenesis as a significant risk factor in early-stage fibrosis and malignant transformation. The mounting evidence reinforces that angiogenesis plays a crucial role in the progression of early-stage fibrosis of OSMF and its malignant transformation, opening avenues for diagnostic and therapeutic interventions.

키워드

참고문헌

  1. Rajendran R. Oral submucous fibrosis: etiology, pathogenesis, and future research. Bull World Health Organ 1994;72:985-96.
  2. Ekanayaka RP, Tilakaratne WM. Oral submucous fibrosis: review on mechanisms of malignant transformation. Oral Surg Oral Med Oral Pathol Oral Radiol 2016;122:192-9. https://doi.org/10.1016/j.oooo.2015.12.018
  3. Pindborg JJ, Sirsat SM. Oral submucous fibrosis. Oral Surg Oral Med Oral Pathol 1966;22:764-79. https://doi.org/10.1016/0030-4220(66)90367-7
  4. Tilakaratne WM, Klinikowski MF, Saku T, Peters TJ, Warnakulasuriya S. Oral submucous fibrosis: review on aetiology and pathogenesis. Oral Oncol 2006;42:561-8. https://doi.org/10.1016/j.oraloncology.2005.08.005
  5. More CB, Gupta S, Joshi J, Verma SN. Classification system for oral submucous fibrosis. J Indian Acad Oral Med Radiol 2012;24:24-9. https://doi.org/10.5005/jp-journals-10011-1254
  6. Haider SM, Merchant AT, Fikree FF, Rahbar MH. Clinical and functional staging of oral submucous fibrosis. Br J Oral Maxillofac Surg 2000;38:12-5. https://doi.org/10.1054/bjom.1999.0062
  7. Arakeri G, Rai KK, Hunasgi S, Merkx MAW, Gao S, Brennan PA. Oral submucous fibrosis: an update on current theories of pathogenesis. J Oral Pathol Med 2017;46:406-12. https://doi.org/10.1111/jop.12581
  8. Ray JG, Ranganathan K, Chattopadhyay A. Malignant transformation of oral submucous fibrosis: overview of histopathological aspects. Oral Surg Oral Med Oral Pathol Oral Radiol 2016;122:200-9. https://doi.org/10.1016/j.oooo.2015.11.024
  9. Pandiar D, Shameena P. Immunohistochemical expression of CD34 and basic fibroblast growth factor (bFGF) in oral submucous fibrosis. J Oral Maxillofac Pathol 2014;18:155-61. https://doi.org/10.4103/0973-029X.140718
  10. Thakkannavar SS, Naik VV. Histochemical and immunohistochemical analysis of collagen fibers and microvascular density in various grades of oral submucous fibrosis. Iran J Pathol 2019;14:127-34. https://doi.org/10.30699/IJP.14.2.127
  11. Tekade SA, Chaudhary MS, Tekade SS, Sarode SC, Wanjari SP, Gadbail AR, et al. Early stage oral submucous fibrosis is characterized by increased vascularity as opposed to advanced stages. J Clin Diagn Res 2017;11:ZC92-6. https://doi.org/10.7860/JCDR/2017/25800.9948
  12. Madhavan Nirmal R, Veeravarmal V, Bhavani S, Srinivasan P, Austin RD. Evaluation of micro-vessel density (Mvd) and vascular endothelial growth factor (Vegf) as possible indicator of malignant transformation in oral submucous fibrosis. J Dent Med Sci 2016;15:72-7.
  13. Rajendran R, Paul S, Mathews PP, Raghul J, Mohanty M. Characterisation and quantification of mucosal vasculature in oral submucous fibrosis. Indian J Dent Res 2005;16:83-91.
  14. Garg N, Mehrotra RR. Morphometric analysis of epithelial thickness and blood vessels in different grades of oral submucous fibrosis. Malays J Pathol 2014;36:189-93.
  15. Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 2009;6:e1000097. https://doi.org/10.1371/journal.pmed.1000097
  16. Singh M, Chaudhary AK, Pandya S, Debnath S, Singh M, Singh PA, et al. Morphometric analysis in potentially malignant head and neck lesions: oral submucous fibrosis. Asian Pac J Cancer Prev 2010;11:257-60.
  17. Sarode SC, Sarode GS, Sengupta N, Ghone U, Patil S. Conspicuous and frank dilated vascular spaces: a marker of malignant transformation in oral submucous fibrosis. J Oral Biol Craniofac Res 2021;11:365-7. https://doi.org/10.1016/j.jobcr.2021.03.007
  18. Pal M, Nawn D, Lahiri P, Das D, Paul RR, Chakraborty D. Malignant potentiality assessment of oral submucous fibrosis through semi-quantitative approach. J Oral Maxillofac Pathol 2020;24:188. https://doi.org/10.4103/jomfp.JOMFP_297_19
  19. Debnath S, Mitra B, Paul B, Saha TN, Maity A. Morphometric analysis of oral submucous fibrosis and its correlation with histological staging and clinical severity of trismus. Egypt J Ear Nose Throat Allied Sci 2013;14:85-90. https://doi.org/10.1016/j.ejenta.2013.04.005
  20. Kapoor R, Sansare K, Tamgadge S, Karjodkar F, Mehra A, Mishra I, et al. Epithelial atrophy, fibrosis and vascularity correlation with epithelial dysplasia in oral submucous fibrosis, a prospective study. J Microsc Ultrastruct 2020;10:1-6. https://doi.org/10.4103/JMAU.JMAU_36_20
  21. Murgod VV, Kale AD, Angadi PV, Hallikerimath S. Morphometric analysis of the mucosal vasculature in oral submucous fibrosis and its comparison with oral squamous cell carcinoma. J Oral Sci 2014;56:173-8. https://doi.org/10.2334/josnusd.56.173
  22. Sirsat SM, Pindborg JJ. The vascular response in early and advanced oral submucous fibrosis. Acta Pathol Microbiol Scand 1967;70:179-84. https://doi.org/10.1111/j.1699-0463.1967.tb01280.x
  23. Gupta S, Sharma M, Banerjee S, Holikatti K, Kamble P, Goyal JV. The immunolocalization of mast cells in the pathology of oral submucous fibrosis. Cureus 2023;15:e40069. https://doi.org/10.7759/cureus.40069
  24. Hande AH, Chaudhary MS, Gadbail AR, Gawande MN, Patil SK, Zade PR, et al. Significance of HIF-1α and CD105 in establishing oral squamous cell carcinoma associated with oral submucous fibrosis a distinct clinicopathological entity. J Cancer Res Ther 2022;18:33-41. https://doi.org/10.4103/jcrt.JCRT_591_20
  25. Gadbail AR, Chaudhary MS, Sarode SC, Gondivkar SM, Belekar L, Mankar-Gadbail MP, et al. Ki67, CD105 and α-smooth muscle actin expression in disease progression model of oral submucous fibrosis. J Investig Clin Dent 2019;10:e12443. https://doi.org/10.1111/jicd.12443
  26. Gadbail AR, Chaudhary MS, Sarode SC, Gawande M, Korde S, Tekade SA, et al. Ki67, CD105, and α-SMA expressions better relate the binary oral epithelial dysplasia grading system of World Health Organization. J Oral Pathol Med 2017;46:921-7. https://doi.org/10.1111/jop.12612
  27. Gadbail AR, Chaudhary M, Sarode SC, Gondivkar S, Tekade SA, Zade P, et al. Ki67, CD105, and α-SMA expression supports the transformation relevant dysplastic features in the atrophic epithelium of oral submucous fibrosis. PLoS One 2018;13:e0200171. https://doi.org/10.1371/journal.pone.0200171
  28. Gadbail AR, Korde S, Chaudhary MS, Sarode SC, Gondivkar SM, Dande R, et al. Ki67, CD105, and α-SMA expression supports biological distinctness of oral squamous cell carcinoma arising in the background of oral submucous fibrosis. Asian Pac J Cancer Prev 2020;21:2067-74. https://doi.org/10.31557/APJCP.2020.21.7.2067
  29. Gupta S, Shetty DC, Gulati N, Juneja S, Jain A. Potentiated action on the progression of OSMF by hypoxia mediated signaling pathway by the epithelial mesenchymal transition and angiogenic apparatus. J Cancer Res Ther 2023;19(Suppl 1):S389-96. https://doi.org/10.4103/jcrt.jcrt_502_21
  30. Sheelam S, Reddy SP, Kulkarni PG, Nandan S, Keerthi M, Raj GS. Role of cell proliferation and vascularity in malignant transformation of potentially malignant disorders. J Oral Maxillofac Pathol 2018;22:281. https://doi.org/10.4103/jomfp.JOMFP_182_17
  31. Anura A, Das RK, Pal M, Paul RR, Ray AK, Chatterjee J. Correlated analysis of semi-quantitative immunohistochemical features of E-cadherin, VEGF and CD105 in assessing malignant potentiality of oral submucous fibrosis. Pathol Res Pract 2014;210:1054-63. https://doi.org/10.1016/j.prp.2014.06.009
  32. Anura A, Conjeti S, Das RK, Pal M, Paul RR, Bag S, et al. Computer-aided molecular pathology interpretation in exploring prospective markers for oral submucous fibrosis progression. Head Neck 2016;38:653-69. https://doi.org/10.1002/hed.23962
  33. Lin Y, Jiang Y, Xian H, Cai X, Wang T. Expression and correlation of the Pi3k/Akt pathway and VEGF in oral submucous fibrosis. Cell Prolif 2023;56:e13491. https://doi.org/10.1111/cpr.13491
  34. Das RK, Pal M, Barui A, Paul RR, Chakraborty C, Ray AK, et al. Assessment of malignant potential of oral submucous fibrosis through evaluation of p63, E-cadherin and CD105 expression. J Clin Pathol 2010;63:894-9. https://doi.org/10.1136/jcp.2010.078964
  35. Bavle RM, Paremala K, Sowmya M, Sudhakara M, Reshma V, Hosthor S. Predicting the malignant transformation of oral submucous fibrosis using quantitative biomarkers p63 and CD31. J Orofac Sci 2020;12:52-60. https://doi.org/10.4103/jofs.jofs_6_20
  36. Khanna JN, Andrade NN. Oral submucous fibrosis: a new concept in surgical management. Report of 100 cases. Int J Oral Maxillofac Surg 1995;24:433-9. https://doi.org/10.1016/s0901-5027(05)80473-4
  37. Nayak S, Goel MM, Bhatia V, Chandra S, Makker A, Kumar S, et al. Molecular and phenotypic expression of decorin as modulator of angiogenesis in human potentially malignant oral lesions and oral squamous cell carcinomas. Indian J Pathol Microbiol 2013;56:204-10. https://doi.org/10.4103/0377-4929.120366
  38. Nayak S, Goel MM, Chandra S, Bhatia V, Mehrotra D, Kumar S, et al. VEGF-A immunohistochemical and mRNA expression in tissues and its serum levels in potentially malignant oral lesions and oral squamous cell carcinomas. Oral Oncol 2012;48:233-9. https://doi.org/10.1016/j.oraloncology.2011.10.003
  39. Desai RS, Mamatha GS, Khatri MJ, Shetty SJ. Immunohistochemical expression of vascular endothelial growth factor (VEGF) and its possible role in tumour progression during malignant transformation of atrophic epithelium in oral submucous fibrosis. Curr Angiogenes 2012;1:347-53. https://doi.org/10.2174/2211552811201040347
  40. Desai RS, Mamatha GS, Khatri MJ, Shetty SJ. Immunohistochemical expression of CD34 for characterization and quantification of mucosal vasculature and its probable role in malignant transformation of atrophic epithelium in oral submucous fibrosis. Oral Oncol 2010;46:553-8. https://doi.org/10.1016/j.oraloncology.2010.04.004
  41. Pammar C, Nayak RS, Kotrashetti VS, Hosmani J. Comparison of microvessel density using CD34 and CD105 in oral submucous fibrosis and its correlation with clinicopathological features: an immunohistochemical study. J Cancer Res Ther 2018;14:983-8. https://doi.org/10.4103/0973-1482.181186
  42. Sabarinath B, Sriram G, Saraswathi TR, Sivapathasundharam B. Immunohistochemical evaluation of mast cells and vascular endothelial proliferation in oral submucous fibrosis. Indian J Dent Res 2011;22:116-21. https://doi.org/10.4103/0970-9290.80009
  43. Sharma E, Tyagi N, Gupta V, Narwal A, Vij H, Lakhnotra D. Role of angiogenesis in oral submucous fibrosis using vascular endothelial growth factor and CD34: an immunohistochemical study. Indian J Dent Res 2019;30:755-62. https://doi.org/10.4103/ijdr.IJDR_186_17
  44. Sharada P, Swaminathan U, Nagamalini BR, Kumar KV, Ashwini BK, Lavanya V. Coalition of E-cadherin and vascular endothelial growth factor expression in predicting malignant transformation in common oral potentially malignant disorders. J Oral Maxillofac Pathol 2018;22:40-7. https://doi.org/10.4103/jomfp.JOMFP_13_18
  45. Kaur A, Rustagi N, Ganesan A, Pm N, Kumar P, Chaudhry K. Minimal clinically important difference of mouth opening in oral submucous fibrosis patients: a retrospective study. J Korean Assoc Oral Maxillofac Surg 2022;48:167-73. https://doi.org/10.5125/jkaoms.2022.48.3.167
  46. Qayyum MU, Janjua OS, Ul Haq E, Zahra R. Nasolabial and extended nasolabial flaps for reconstruction in oral submucous fibrosis. J Korean Assoc Oral Maxillofac Surg 2018;44:191-7. https://doi.org/10.5125/jkaoms.2018.44.4.191
  47. Bocca C, Novo E, Miglietta A, Parola M. Angiogenesis and fibrogenesis in chronic liver diseases. Cell Mol Gastroenterol Hepatol 2015;1:477-88. https://doi.org/10.1016/j.jcmgh.2015.06.011
  48. Elpek GO. Angiogenesis and liver fibrosis. World J Hepatol 2015;7:377-91. https://doi.org/10.4254/wjh.v7.i3.377