DOI QR코드

DOI QR Code

Characteristics of Recombinant Chlamydomonas reinhardtii Expressing Putative Germin-Like Protein from Neopyropia yezoensis

  • Jiae Kim (Department of Biotechnology and Bioengineering, Chonnam National University) ;
  • Jong-il Choi (Department of Biotechnology and Bioengineering, Chonnam National University)
  • 투고 : 2024.07.29
  • 심사 : 2024.08.05
  • 발행 : 2024.10.28

초록

Since microalgae face various environmental stresses for the high production of biofuels, multiple studies have been performed to determine if microalgae are resistant to these various stresses. In this study, the viability of cells under various abiotic stresses was investigated by introducing a putative germin-like protein (GLP) from Neopyropia yezoensis, which was known to be related in the resistance to abiotic stresses. The expression of GLP in Chlamydomonas reinhardtii allowed cells to grow better in various abiotic stress environments. In nitrogen starvation conditions, recombinant cells accumulated the lipid droplet 1.46-fold more than wild-type cells and responded more rapidly to form palmelloid forms. Under high-temperature, hydrogen peroxide conditions and saline stress, the survival rate was increased 3.5 times, 2.19 times, and 3.19 times in recombinant C. reinhardtii with GLP, respectively. The expression level of genes related to pathways in response to various stresses increased 2-fold more under those conditions. This result will be useful for the development of microalgae that can grow better and produce more biofuels under different stress conditions.

키워드

과제정보

The work was funded by the Chonnam Natinal University Supporting Program and was supported by "Regional Innovation Strategy (RIS)" through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (MOE) (2021RIS-002).

참고문헌

  1. Stocker T, Qin D, Plattner GK, Tignor M, Allen S, Boschung J, Nauels A, Xia Y, Bex V, Midgley P. 2014. Summary for policymakers.
  2. Melero-Jimenez IJ, Banares-Espana E, Garcia-Sanchez MJ, Flores-Moya A. 2022. Changes in the growth rate of Chlamydomonas reinhardtii under long-term selection by temperature and salinity: acclimation vs. evolution. Sci. Total Environ. 822: 153467.
  3. Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, et al. 2007. The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318: 245-250.
  4. Jinkerson RE, and Jonikas MC. 2015. Molecular techniques to interrogate and edit the Chlamydomonas nuclear genome. Plant J. 82: 393-412.
  5. Xie B, Bishop S, Stessman D, Wright D, Spalding MH, Halverson LJ. 2013. Chlamydomonas reinhardtii thermal tolerance enhancement mediated by a mutualistic interaction with vitamin B12-producing bacteria. ISME J. 7: 1544-1555.
  6. Siaut M, Cuine S, Cagnon C, Fessler B, Nguyen M, Carrier P, et al. 2011. Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves. BMC Biotechnol. 11: 7.
  7. de Carpentier F, Lemaire SD, Danon A. 2019. When unity is strength: the strategies used by Chlamydomonas to survive environmental stresses. Cells 8: 1307.
  8. Rodolfi L, Chini Zittelli G, Bassi N, Padovani G, Biondi N, Bonini G, et al. 2009. Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol. Bioeng. 102: 100-112.
  9. Ho SH, Nakanishi A, Kato Y, Yamasaki H, Chang JS, Misawa N, et al. 2017. Dynamic metabolic profiling together with transcription analysis reveals salinity-induced starch-to-lipid biosynthesis in alga Chlamydomonas sp. JSC4. Sci. Rep. 7: 45471.
  10. Hema R, Senthil-Kumar M, Shivakumar S, Chandrasekhara Reddy Pm, Udayakumar M. 2007. Chlamydomonas reinhardtii, a model system for functional validation of abiotic stress responsive genes. Planta 226: 655-670.
  11. Kim JH, Ahn JW, Park EJ, Choi JI. 2023. Overexpression of s-adenosylmethionine synthetase in recombinant Chlamydomonas for enhanced lipid production. J. Microbiol. Biotechnol. 33: 310-318.
  12. Kim JH, Park EJ, Choi Ji. 2023. Overexpression of putative glutathione peroxidase from Neopyropia-associated microorganisms in Chlamydomonas to respond to abiotic stress. Arch. Microbiol. 205: 163.
  13. Park SJ, Ahn JW, Choi JI. 2022. Improved tolerance of recombinant Chlamydomonas rainhardtii with putative 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase from Pyropia yezoensis to nitrogen starvation. J. Microbiol. 60: 63-69.
  14. Bazzani E, Lauritano C, Mangoni O, Bolinesi F, Saggiomo M. 2021. Chlamydomonas responses to salinity stress and possible biotechnological exploitation. J. Mar. Sci. Eng. 9: 1242.
  15. Schulz-Raffelt M, Lodha M, Schroda M. 2007. Heat shock factor 1 is a key regulator of the stress response in Chlamydomonas. Plant J. 52: 286-295.
  16. Guo M, Liu JH, Ma X, Luo DX, Gong ZH, Lu MH. 2016. The plant heat stress transcription factors (HSFs): structure, regulation, and function in response to abiotic stresses. Front. Plant Sci. 7: 180954.
  17. Mittler R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7: 405-410.
  18. Asada K. 1999. The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Ann. Rev. Plant Biol. 50: 601-639.
  19. Rizhsky L, Liang H, Mittler R. 2003. The water-water cycle is essential for chloroplast protection in the absence of stress.J. Biol. Chem. 278: 38921-38925.
  20. Noctor G, Foyer CH. 1998. Ascorbate and glutathione: keeping active oxygen under control. Ann. Rev. Plant Biol. 49: 249-279.
  21. Finnegan PM, Soole KL, Umbach AL. 2004. Alternative mitochondrial electron transport proteins in higher plants. In plant mitochondria: from genome to function pp. 163-230., Springer.
  22. Wang J, Rajakulendran N, Amirsadeghi S, Vanlerberghe GC. 2011. Impact of mitochondrial alternative oxidase expression on the response of Nicotiana tabacum to cold temperature. Physiol. Plantarum. 142: 339-351.
  23. Boehm M, Alahuhta M, Mulder DW, Peden EA, Long H, Brunecky R, et al. 2016. Crystal structure and biochemical characterization of Chlamydomonas FDX2 reveal two residues that, when mutated, partially confer FDX2 the redox potential and catalytic properties of FDX1. Photosynth. Res. 128: 45-57.
  24. Lin YH, Pan KY, Hung CH, Huang HE, Chen CL, Feng TY, et al. 2013. Overexpression of ferredoxin, PETF, enhances tolerance to heat stress in Chlamydomonas reinhardtii. Int. J. Mol. Sci. 14: 20913-20929.
  25. Murik O, Elboher A, Kaplan A. 2014. Dehydroascorbate: a possible surveillance molecule of oxidative stress and programmed cell death in the green alga Chlamydomonas reinhardtii. New Phytol. 202: 471-484.
  26. Niemeyer J, Scheuring D, Oestreicher J, Morgan B, Schroda M. 2021. Real-time monitoring of subcellular H2O2 distribution in Chlamydomonas reinhardtii. Plant Cell 33: 2935-2949.
  27. Molen TA, Rosso D, Piercy S, Maxwell DP. 2006. Characterization of the alternative oxidase of Chlamydomonas reinhardtii in response to oxidative stress and a shift in nitrogen source. Physiol. Plantarum 127: 74-86.
  28. Zalutskaya Z, Lapina T, Ermilova E. 2015. The Chlamydomonas reinhardtii alternative oxidase 1 is regulated by heat stress. Plant Physiol. Biochem. 97: 229-234.