DOI QR코드

DOI QR Code

Comparative Genomic Analyses of E. coli ST2178 Strains Originated from Wild Birds in Pakistan

  • Jung Hun Lee (National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University) ;
  • Abdul Rauf Tareen (Department of Microbiology, Quaid-i-Azam University) ;
  • Nam-Hoon Kim (Department of Life Sciences, Jeonbuk National University) ;
  • Chanyeong Jeong (National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University) ;
  • Byeonghyeon Kang (National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University) ;
  • Gwangje Lee (National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University) ;
  • Dae-Wi Kim (Department of Life Sciences, Jeonbuk National University) ;
  • Rabaab Zahra (Department of Microbiology, Quaid-i-Azam University) ;
  • Sang Hee Lee (National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University)
  • Received : 2024.07.17
  • Accepted : 2024.08.14
  • Published : 2024.10.28

Abstract

The emergence and spread of multidrug-resistance (MDR) pathogenic Escherichia coli due to horizontal gene transfer of antibiotic resistance genes (ARGs) and virulence factors (VFs) is a global health concern, particularly in developing countries. While numerous studies have focused on major sequence types (STs), the implication of minor STs in ARG dissemination and their pathogenicity remains crucial. In this study, two E. coli strains (PEC1011 and PEC1012) were isolated from wild bird feces in Pakistan and identified as ST2178 based on their complete genome sequences. To understand this minor ST, 204 genome assemblies of ST2178 were comparatively analyzed with the isolates' genomes. The phylogenetic analyses revealed five subclades of ST2178. Subclade E strains were predominantly isolated from human specimens, whereas subclades A and B strains including strains PEC1011 and PEC1012, respectively, were frequently isolated from animal. Mobile genetic elements (MGEs) exhibited the positive correlation with ARGs but not with VFs in this ST. Plasmid-borne ARGs exhibited higher correlation with plasmid-borne MGEs, indicating the role of diverse mobile plasmid structures in ARG transmission. Subclade E exhibited diverse plasmid-borne ARG repertoires correlated with MGEs, marking it as a critical surveillance target. In the case of VFs, they exhibited phylogeny-dependent profiles. Strain PEC1012 harbored various plasmid-borne ARGs, which are similar with conserved ARG repertoires in subclade A. The presence of unique ARG insertion in pPEC1012 highlights the importance of subclade A in ARG dissemination. This study comprehensively elucidates the landscape of ST2178, identifying critical phylogenetic subclades and their characteristics in ARG and VF occurrence.

Keywords

Acknowledgement

This work was supported by research grants from the National Research Foundation of Korea (NRF) funded by the Ministry of Science, Information and Communications Technology (MSIT; grant Nos. NRF-2021R1A2C3004826 and NRF-2019R1C1C1008615).

References

  1. Croxen MA, Finlay BB. 2010. Molecular mechanisms of Escherichia coli pathogenicity. Nat. Rev. Microbiol. 8: 26-38.
  2. Croxen MA, Law RJ, Scholz R, Keeney KM, Wlodarska M, Finlay BB. 2013. Recent advances in understanding enteric pathogenic Escherichia coli. Clin. Microbiol. Rev. 26: 822-880.
  3. Geurtsen J, de Been M, Weerdenburg E, Zomer A, McNally A, Poolman J. 2022. Genomics and pathotypes of the many faces of Escherichia coli. FEMS Microbiol. Rev. 46: fuac031.
  4. Poirel L, Madec JY, Lupo A, Schink AK, Kieffer N, Nordmann P, et al. 2018. Antimicrobial resistance in Escherichia coli. Microbiol. Spectr. 6. doi: 10.1128/microbiolspec.ARBA-0026-2017.
  5. Anjum MF, Schmitt H, Borjesson S, Berendonk TU, network W. 2021. The potential of using E. coli as an indicator for the surveillance of antimicrobial resistance (AMR) in the environment. Curr. Opin. Microbiol. 64: 152-158.
  6. Wang J, Ma ZB, Zeng ZL, Yang XW, Huang Y, Liu JH. 2017. The role of wildlife (wild birds) in the global transmission of antimicrobial resistance genes. Zool. Res. 38: 55-80.
  7. Ahmed NA, Gulhan T. 2024. Determination of antibiotic resistance patterns and genotypes of Escherichia coli isolated from wild birds. Microbiome 12: 8.
  8. Hayer SS, Casanova-Higes A, Paladino E, Elnekave E, Nault A, Johnson T, et al. 2022. Global distribution of extended spectrum cephalosporin and carbapenem resistance and associated resistance markers in Escherichia coli of swine origin - a systematic review and meta-analysis. Front. Microbiol. 13: 853810.
  9. Bilal H, Khan MN, Rehman T, Hameed MF, Yang X. 2021. Antibiotic resistance in Pakistan: a systematic review of past decade. BMC Infect. Dis. 21: 244.
  10. Abrar S, Hussain S, Khan RA, Ul Ain N, Haider H, Riaz S. 2018. Prevalence of extended-spectrum-beta-lactamase-producing Enterobacteriaceae: first systematic meta-analysis report from Pakistan. Antimicrob. Resist. Infect. Control 7: 26.
  11. Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ. 2010. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11: 119.
  12. Zhou Z, Alikhan NF, Mohamed K, Fan Y, Agama Study G, Achtman M. 2020. The EnteroBase user's guide, with case studies on Salmonella transmissions, Yersinia pestis phylogeny, and Escherichia core genomic diversity. Genome Res. 30: 138-152.
  13. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MT, et al. 2015. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 31: 3691-3693.
  14. Katoh K, Misawa K, Kuma K, Miyata T. 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30: 3059-3066.
  15. Price MN, Dehal PS, Arkin AP. 2010. FastTree 2--approximately maximum-likelihood trees for large alignments. PLoS One 5: e9490.
  16. Letunic I, Bork P. 2021. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49: W293-W296.
  17. Jolley KA, Bray JE, Maiden MCJ. 2018. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res. 3: 124.
  18. Wirth T, Falush D, Lan R, Colles F, Mensa P, Wieler LH, et al. 2006. Sex and virulence in Escherichia coli: an evolutionary perspective. Mol. Microbiol. 60: 1136-1151.
  19. Beghain J, Bridier-Nahmias A, Le Nagard H, Denamur E, Clermont O. 2018. ClermonTyping: an easy-to-use and accurate in silico method for Escherichia genus strain phylotyping. Microb. Genom. 4: e000192.
  20. Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30: 2068-2069.
  21. Alcock BP, Huynh W, Chalil R, Smith KW, Raphenya AR, Wlodarski MA, et al. 2023. CARD 2023: expanded curation, support for machine learning, and resistome prediction at the Comprehensive Antibiotic Resistance Database. Nucleic Acids Res. 51: D690-D699.
  22. Roer L, Tchesnokova V, Allesoe R, Muradova M, Chattopadhyay S, Ahrenfeldt J, et al. 2017. Development of a web tool for Escherichia coli subtyping based on fimH alleles. J. Clin. Microbiol. 55: 2538-2543.
  23. Johansson MHK, Bortolaia V, Tansirichaiya S, Aarestrup FM, Roberts AP, Petersen TN. 2021. Detection of mobile genetic elements associated with antibiotic resistance in Salmonella enterica using a newly developed web tool: MobileElementFinder. J. Antimicrob. Chemother. 76: 101-109.
  24. Camargo AP, Roux S, Schulz F, Babinski M, Xu Y, Hu B, et al. 2023. Identification of mobile genetic elements with geNomad. Nat. Biotechnol. 42: 1303-1312.
  25. Gilchrist CLM, Chooi YH. 2021. clinker & clustermap.js: automatic generation of gene cluster comparison figures. Bioinformatics 37: 2473-2475.
  26. Higgins J, Hohn C, Hornor S, Frana M, Denver M, Joerger R. 2007. Genotyping of Escherichia coli from environmental and animal samples. J. Microbiol. Methods 70: 227-235.
  27. Katouli M. 2010. Population structure of gut Escherichia coli and its role in development of extra-intestinal infections. Iran. J. Microbiol. 2: 59-72.
  28. Harada K, Nakai Y, Kataoka Y. 2012. Mechanisms of resistance to cephalosporin and emergence of O25b-ST131 clone harboring CTX-M-27 beta-lactamase in extraintestinal pathogenic Escherichia coli from dogs and cats in Japan. Microbiol. Immunol. 56: 480-485.
  29. Ho PL, Lo WU, Lai EL, Law PY, Leung SM, Wang Y, et al. 2015. Clonal diversity of CTX-M-producing, multidrug-resistant Escherichia coli from rodents. J. Med. Microbiol. 64: 185-190.
  30. Obodoechi LO, Carvalho I, Chenouf NS, Martinez-Alvarez S, Sadi M, Nwanta JA, et al. 2021. Antimicrobial resistance in Escherichia coli isolates from frugivorous (Eidolon helvum) and insectivorous (Nycteris hispida) bats in Southeast Nigeria, with detection of CTX-M-15 producing isolates. Comp. Immunol. Microbiol. Infect. Dis. 75: 101613.
  31. Osinska M, Nowakiewicz A, Zieba P, Gnat S, Lagowski D, Troscianczyk A. 2022. A rich mosaic of resistance in extended-spectrum beta-lactamase-producing Escherichia coli isolated from red foxes (Vulpes vulpes) in Poland as a potential effect of increasing synanthropization. Sci. Total Environ. 818: 151834.
  32. Nguyen TTH, Iguchi A, Ohata R, Kawai H, Ooka T, Nakajima H, et al. 2021. Distribution of novel Og types in shiga toxin-producing Escherichia coli isolated from healthy cattle. J. Clin. Microbiol. 59: e02624-20.
  33. Rodriguez I, Thomas K, Van Essen A, Schink AK, Day M, Chattaway M, et al. 2014. Chromosomal location of blaCTX-M genes in clinical isolates of Escherichia coli from Germany, The Netherlands and the UK. Int. J. Antimicrob. Agents 43: 553-557.
  34. Souverein D, Euser SM, Herpers BL, Diederen B, Houtman P, van Seventer M, et al. 2016. Prevalence, risk factors and molecular epidemiology of highly resistant gram negative rods in hospitalized patients in the Dutch region Kennemerland. Antimicrob. Resist. Infect. Control 5: 8.
  35. Naha S, Basak P, Sands K, Milton R, Carvalho MJ, Mitra S, et al. 2023. Carriage and within-host diversity of mcr-1.1-harbouring Escherichia coli from pregnant mothers: inter- and intra-mother transmission dynamics of mcr-1.1. Emerg. Microbes Infect. 12: 2278899.
  36. Hazen TH, Michalski JM, Tennant SM, Rasko DA. 2023. Genomic diversity of non-diarrheagenic fecal Escherichia coli from children in sub-Saharan Africa and south Asia and their relatedness to diarrheagenic E. coli. Nat. Commun. 14: 1400.
  37. Guerrieri CG, Monfardini MV, Silva EA, Bueno de Freitas L, Schuenck RP, Spano LC. 2020. Wide genetic heterogeneity and low antimicrobial resistance of enteroaggregative Escherichia coli isolates from several rural communities. J. Med. Microbiol. 69: 96-103.
  38. Park N, Hur JI, Lee S, Ryu S. 2024. Prevalence of CTX-M types among ESBL-producing pathogenic Escherichia coli isolates from foodborne diarrheal patients in Gyeonggi-do, South Korea. Food Sci. Biotechnol. 33: 2825-2833
  39. Blyton MD, Gordon DM. 2017. Genetic attributes of E. coli isolates from chlorinated drinking water. PLoS One 12: e0169445.
  40. Aworh MK, Ekeng E, Nilsson P, Egyir B, Owusu-Nyantakyi C, Hendriksen RS. 2022. Extended-spectrum β-lactamase-Producing Escherichia coli among humans, beef cattle, and abattoir environments in Nigeria. Front. Cell. Infect. Microbiol. 12: 869314.
  41. Clark JR, Maresso AM. 2021. Comparative pathogenomics of Escherichia coli: polyvalent vaccine target identification through virulome analysis. Infect. Immun. 89: e0011521.