Design and performance evaluation of self-heating cementitious composites system

전도성 시멘트 기반 자가 발열 복합재료 시스템의 설계 및 성능 평가

  • Bang, Jinho ;
  • Yang, Beomjoo
  • 방진호 (충북대학교 공과대학 토목공학과 ) ;
  • 양범주 (충북대학교 공과대학 토목공학과)
  • Published : 2024.06.30

Abstract

This study focuses on the design and performance evaluation of electrically conductive cement-based heating composites system. Conductive fillers, specifically multi-walled carbon nanotube (MWCNT) and carbon fiber (CF), were incorporated to achieve high electrical conductivity. The study demonstrated that localized heating is more economical and efficient than heating entire structures. Experimental results showed stable electrical conductivity and effective heating performance, with localized heating achieving significant temperature increases. The findings suggest that localized heating systems can reduce material costs and energy requirements, highlighting their potential for smart road and de-icing applications. Future research should address long-term performance and economic feasibility.

Keywords

Acknowledgement

이 논문은 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구입니다 (2020R1C1C1005063).

References

  1. Seo, J., Jang, D., Yang, B., Yoon, H. N., Jang, J. G., Park, S., & Lee, H. K. (2022). Material characterization and piezoresistive sensing capability assessment of thin-walled CNT-embedded ultra-high performance concrete. Cement and Concrete Composites, 134, 104808.
  2. Jang, D., Bang, J., & Jeon, H. (2023). Impact of silica aerogel addition on the electrical and piezo-resistive sensing stability of CNT-embedded cement-based sensors exposed to varied environments. Journal of Building Engineering, 78, 107700.
  3. Barri, K., Zhang, Q., Kline, J., Lu, W., Luo, J., Sun, Z., ... & Alavi, A. H. (2023). Multifunctional Nanogenerator-Integrated Metamaterial Concrete Systems for Smart Civil Infrastructure. Advanced Materials, 35(14), 2211027.
  4. Wang, X., Dong, S., Ashour, A., & Han, B. (2021). Energy-harvesting concrete for smart and sustainable infrastructures. Journal of Materials Science, 56, 16243-16277.
  5. Li, Y., Liu, Y., Jin, C., Mu, J., & Liu, J. (2023). Research on mechanical and electromagnetic shielding properties of cement paste with different contents of fly ash and slag. NDT & E International, 133, 102736.
  6. Ma, C., Xie, S., Wu, Z., Si, T., Wu, J., Ji, Z., & Wang, J. (2023). Research and simulation of three-layered lightweight cement-based electromagnetic wave absorbing composite containing expanded polystyrene and carbon black. Construction and Building Materials, 393, 132047.
  7. Wang, X., Wu, Y., Zhu, P., & Ning, T. (2021). Snow melting performance of graphene composite conductive concrete in severe cold environment. Materials, 14(21), 6715.
  8. Takikawa, H., Ikeda, M., Hirahara, K., Hibi, Y., Tao, Y., Ruiz Jr, P. A., ... & Iijima, S. (2002). Fabrication of single-walled carbon nanotubes and nanohorns by means of a torch arc in open air. Physica B: Condensed Matter, 323(1-4), 277-279.
  9. Jang, D., Yoon, H. N., Farooq, S. Z., Lee, H. K., & Nam, I. W. (2021). Influence of water ingress on the electrical properties and electromechanical sensing capabilities of CNT/cement composites. Journal of Building Engineering, 42, 103065.
  10. Lee, G. C., Kim, Y., Seo, S. Y., Yun, H. D., & Hong, S. (2021). Influence of CNT Incorporation on the Carbonation of Conductive Cement Mortar. Materials, 14(21), 6721.
  11. Kim, G. M., Naeem, F., Kim, H. K., & Lee, H. K. (2016). Heating and heat-dependent mechanical characteristics of CNT-embedded cementitious composites. Composite Structures, 136, 162-170.
  12. Hambach, M., Moller, H., Neumann, T., & Volkmer, D. (2016). Carbon fibre reinforced cement-based composites as smart floor heating materials. Composites Part B: Engineering, 90, 465-470.
  13. Jang, D., Bang, J., Yoon, H. N., Seo, J., Jung, J., Jang, J. G., & Yang, B. (2022). Deep learning-based LSTM model for prediction of long-term piezoresistive sensing performance of cement-based sensors incorporating multi-walled carbon nanotube. Computers and Concrete, 30(5), 301.
  14. Park, H. M., Park, S. M., Lee, S. M., Shon, I. J., Jeon, H., & Yang, B. J. (2019). Automated generation of carbon nanotube morphology in cement composite via data-driven approaches. Composites Part B: Engineering, 167, 51-62.
  15. Tafesse, M., Alemu, A. S., Yang, B., Park, S., & Kim, H. K. (2023). Crack monitoring strategy for concrete structures in various service conditions via multiple CNT-CF/cement composite sensors: Experiment and simulation approaches. Cement and Concrete Composites, 143, 105249.
  16. Yoon, H. N., Jang, D., & Yang, B. (2024). Experimental investigations on self-heating capability of cement composites incorporating CNT and CF: Impact of sample size and electrode spacing. Case Studies in Construction Materials, e03414.
  17. Kim, G. M., Nam, I. W., Yang, B., Yoon, H. N., Lee, H. K., & Park, S. (2019). Carbon nanotube (CNT) incorporated cementitious composites for functional construction materials: The state of the art. Composite Structures, 227, 111244.
  18. Jang, D., Yoon, H. N., Seo, J., Yang, B., Jang, J. G., & Park, S. (2023). Effect of carbonation curing regime on electric heating performance of CNT/cement composites. Journal of Building Engineering, 73, 106815.
  19. Bang, J., Park, H. M., & Yang, B. (2021). Repetitive heating performance of MgO-activated ground granulated blast furnace slag composites containing MWCNTs. Functional Composites and Structures, 3(1), 015003.
  20. Yoon, H. N., Bang, J., Jang, D., & Yang, B. (2024). Investigation on NTC/PTC effects of cement-based self-heating composites with varied conductive filler contents. Developments in the Built Environment, 18, 100416.
  21. ASTM C 109 Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens), 2009 Annual Book of ASTM Standards, ASTM,