과제정보
This work was supported by Korea Institute of Energy Technology Evaluation and Planning(KETEP) grant funded by the Korea government(MOTIE)(20212010200080, In-situ carbonation technology development using CO2 emissions from cement industry).
참고문헌
- Baltakys, K., Sarapajevaite, G., & Dambrauskas, T. (2018). The influence of different additives on the early-stage hydration of calcium aluminate cement. Journal of Thermal Analysis and Calorimetry, 134, 89-99.
- Bensted, J. (2002). Calcium aluminate cements. Structure and performance of cements, 2, 114-138.
- Demo, P., Sveshnikov, A., Hokova, Ladman, D., & Ticha, P. (2012). Physical and chemical aspects of the nucleation of cement-based materials.
- Ehrl, L., Soos, M., & Morbidelli, M. (2006). Sizing polydisperse dispersions by focused beam reflectance and small angle static light scattering. Particle & Particle Systems Characterization, 23(6), 438-447.
- Embile Jr, R. F., Walder, I. F., & Mahoney, J. J. (2019). Multicomponent reactive transport modeling of effluent chemistry using locally obtained mineral dissolution rates of forsterite and pyrrhotite from a mine tailings deposit. Advances in Water Resources, 128, 87-96.
- Erdoan, S. T., Nie, X., Stutzman, P. E., & Garboczi, E. J. (2010). Micrometer-scale 3-D shape characterization of eight cements: Particle shape and cement chemistry, and the effect of particle shape on laser diffraction particle size measurement. Cement and Concrete Research, 40(5), 731-739.
- Farkas, N., & Kramar, J. A. (2021). Dynamic light scattering distributions by any means. Journal of Nanoparticle Research, 23(5), 120.
- Gou, M., Hou, W., Zhou, L., Zhao, J., & Zhao, M. (2023). Preparation and properties of calcium aluminate cement with Bayer red mud. Construction and Building Materials, 373, 130827.
- Gu, P., Beaudoin, J. J., Quinn, E. G., & Myers, R. E. (1997). Early strength development and hydration of ordinary Portland cement/calcium aluminate cement pastes. Advanced cement based materials, 6(2), 53-58.
- Hendrix, D., McKeon, J., & Wille, K. (2019). Behavior of colloidal nanosilica in an ultrahigh performance concrete environment using dynamic light scattering. Materials, 12(12), 1976.
- Jachiet, M., Azema, N., Le Saout, G., Garcia-Diaz, E., & Kocaba, V. (2018). Influence of triethanolamine on cement pastes at early age of hydration. Advances in Cement Research, 30(4), 159-171.
- Jia, Z., Chen, C., Zhou, H., & Zhang, Y. (2020). The characteristics and formation mechanism of the dark rim in alkali-activated slag. Cement and Concrete Composites, 112, 103682.
- John, E., Matschei, T., & Stephan, D. (2018). Nucleation seeding with calcium silicate hydrate: A review. Cement and Concrete Research, 113, 74-85.
- Kacker, R., Maass, S., Emmerich, J., & Kramer, H. (2018). Application of inline imaging for monitoring crystallization process in a continuous oscillatory baffled crystallizer. AIChE Journal, 64(7), 2450-2461.
- Khaliq, W., & Khan, H. A. (2015). High temperature material properties of calcium aluminate cement concrete. Construction and Building Materials, 94, 475-487.
- Kim, G. M., Park, S. M., & Park, S. W. (2023). Chloride removal of calcium aluminate cements: Reaction and physicochemical characteristics. Case Studies in Construction Materials, 18, e01975.
- Kirca, O., Yaman, I. O., & Tokyay, M. (2013). Compressive strength development of calcium aluminate cement-GGBFS blends. Cement and concrete composites, 35(1), 163-170.
- Krautwurst, N., Nicoleau, L., Dietzsch, M., Lieberwirth, I., Labbez, C., Fernandez-Martinez, A., ... & Tremel, W. (2018). Two-step nucleation process of calcium silicate hydrate, the nanobrick of cement. Chemistry of Materials, 30(9), 2895-2904.
- Li, H., Li, J., Bodycomb, J., & Patience, G. S. (2019). Experimental methods in chemical engineering: particle size distribution by laser diffraction-PSD. The Canadian Journal of Chemical Engineering, 97(7), 1974-1981.
- Loge, I. A., Anabaraonye, B. U., Bovet, N., & Fosbol, P. L. (2023). Crystal nucleation and growth: Supersaturation and crystal resilience determine stickability. Crystal Growth & Design, 23(4), 2619-2627.
- Pollmann, H. (2012). Calcium aluminate cements-raw materials, differences, hydration and properties. Reviews in Mineralogy and Geochemistry, 74(1), 1-82.
- Prasittisopin, L., & Sereewatthanawut, I. (2019). Dissolution, nucleation, and crystal growth mechanism of calcium aluminate cement. Journal of Sustainable Cement-Based Materials, 8(3), 180-197.
- Puerta-Falla, G., Kumar, A., Gomez-Zamorano, L., Bauchy, M., Neithalath, N., & Sant, G. (2015). The influence of filler type and surface area on the hydration rates of calcium aluminate cement. Construction and Building Materials, 96, 657-665.
- Qi, C., Spagnoli, D., & Fourie, A. (2020). Structural, electronic, and mechanical properties of calcium aluminate cements: Insight from first-principles theory. Construction and Building Materials, 264, 120259.
- Saridakis, E., Dierks, K., Moreno, A., Dieckmann, M. W., & Chayen, N. E. (2002). Separating nucleation and growth in protein crystallization using dynamic light scattering. Acta Crystallographica Section D: Biological Crystallography, 58(10), 1597-1600.
- Scherer, G. W., Zhang, J., & Thomas, J. J. (2012). Nucleation and growth models for hydration of cement. Cement and Concrete Research, 42(7), 982-993.
- Schonlein, M., & Plank, J. (2018). A TEM study on the very early crystallization of CSH in the presence of polycarboxylate superplasticizers: Transformation from initial CSH globules to nanofoils. Cement and Concrete Research, 106, 33-39.
- Schubert, R., Meyer, A., Baitan, D., Dierks, K., Perbandt, M., & Betzel, C. (2017). Real-time observation of protein dense liquid cluster evolution during nucleation in protein crystallization. Crystal Growth & Design, 17(3), 954-958.
- Seo, J., Nawaz, A., Jang, J. G., & Lee, H. K. (2022). Modifications in hydration kinetics and characteristics of calcium aluminate cement upon blending with calcium sulfoaluminate cement. Construction and Building Materials, 342, 127958.
- Sereewatthanawut, I., & Prasittisopin, L. (2022). Effects of accelerating and retarding agents on nucleation and crystal growth of calcium aluminate cement. Open Ceramics, 11, 100290.
- Stecher, J., & Plank, J. (2020). Adsorbed layer thickness of polycarboxylate and polyphosphate superplasticizers on polystyrene nanoparticles measured via dynamic light scattering. Journal of colloid and interface science, 562, 204-212.
- Tobler, D. J., Shaw, S., & Benning, L. G. (2009). Quantification of initial steps of nucleation and growth of silica nanoparticles: An in-situ SAXS and DLS study. Geochimica et Cosmochimica Acta, 73(18), 5377-5393.
- Ukrainczyk, N. (2014). Chemical shrinkage during hydration reactions of calcium aluminate cement. Austin J. Chem. Eng, 1(1).
- Vehmas, T., Kronlof, A., & Cwirzen, A. (2017). Effect of additional surfaces on ordinary portland cement early-age hydration. Materials Sciences and Applications, 8(12), 859.
- Win, T. T., Prasittisopin, L., Jongvivatsakul, P., & Likitlersuang, S. (2024). Investigating the role of steel and polypropylene fibers for enhancing mechanical properties and microstructural performance in mitigating conversion effects in calcium aluminate cement. Construction and Building Materials, 430, 136515.
- Zheng, T., Bott, S., & Huo, Q. (2016). Techniques for accurate sizing of gold nanoparticles using dynamic light scattering with particular application to chemical and biological sensing based on aggregate interfaces, 8(33), 21585-21594.