Tracking nucleation characteristics of calcium aluminate cement powder via dynamic light scattering technique

  • Kim, Gwang Mok
  • Published : 2024.06.30

Abstract

Nucleation characteristics can greatly affect the evolution of hydrates, and thereby strength development could be affected as well. This study aims to explore the nucleation characteristics of calcium aluminate cement powder. Dynamic light scattering technique was employed to track nuclei of calcium aluminate powder. The independent variable was the reaction periods which varied from 1 minute to 24 hrs. The test results show that a reduction in the particle size until 1 hr of reaction period was observed, which indicated that dissolution of calcium aluminate powder was the dominant reaction within the period. However, a change in the particle size distribution attributable to the nucleation process was also observed within the first 3 minutes of the reaction. an increase in the particle size attributable to the crystal growth was between 1hr and 24 hrs.

Keywords

Acknowledgement

This work was supported by Korea Institute of Energy Technology Evaluation and Planning(KETEP) grant funded by the Korea government(MOTIE)(20212010200080, In-situ carbonation technology development using CO2 emissions from cement industry).

References

  1. Baltakys, K., Sarapajevaite, G., & Dambrauskas, T. (2018). The influence of different additives on the early-stage hydration of calcium aluminate cement. Journal of Thermal Analysis and Calorimetry, 134, 89-99.
  2. Bensted, J. (2002). Calcium aluminate cements. Structure and performance of cements, 2, 114-138.
  3. Demo, P., Sveshnikov, A., Hokova, Ladman, D., & Ticha, P. (2012). Physical and chemical aspects of the nucleation of cement-based materials.
  4. Ehrl, L., Soos, M., & Morbidelli, M. (2006). Sizing polydisperse dispersions by focused beam reflectance and small angle static light scattering. Particle & Particle Systems Characterization, 23(6), 438-447.
  5. Embile Jr, R. F., Walder, I. F., & Mahoney, J. J. (2019). Multicomponent reactive transport modeling of effluent chemistry using locally obtained mineral dissolution rates of forsterite and pyrrhotite from a mine tailings deposit. Advances in Water Resources, 128, 87-96.
  6. Erdoan, S. T., Nie, X., Stutzman, P. E., & Garboczi, E. J. (2010). Micrometer-scale 3-D shape characterization of eight cements: Particle shape and cement chemistry, and the effect of particle shape on laser diffraction particle size measurement. Cement and Concrete Research, 40(5), 731-739.
  7. Farkas, N., & Kramar, J. A. (2021). Dynamic light scattering distributions by any means. Journal of Nanoparticle Research, 23(5), 120.
  8. Gou, M., Hou, W., Zhou, L., Zhao, J., & Zhao, M. (2023). Preparation and properties of calcium aluminate cement with Bayer red mud. Construction and Building Materials, 373, 130827.
  9. Gu, P., Beaudoin, J. J., Quinn, E. G., & Myers, R. E. (1997). Early strength development and hydration of ordinary Portland cement/calcium aluminate cement pastes. Advanced cement based materials, 6(2), 53-58.
  10. Hendrix, D., McKeon, J., & Wille, K. (2019). Behavior of colloidal nanosilica in an ultrahigh performance concrete environment using dynamic light scattering. Materials, 12(12), 1976.
  11. Jachiet, M., Azema, N., Le Saout, G., Garcia-Diaz, E., & Kocaba, V. (2018). Influence of triethanolamine on cement pastes at early age of hydration. Advances in Cement Research, 30(4), 159-171.
  12. Jia, Z., Chen, C., Zhou, H., & Zhang, Y. (2020). The characteristics and formation mechanism of the dark rim in alkali-activated slag. Cement and Concrete Composites, 112, 103682.
  13. John, E., Matschei, T., & Stephan, D. (2018). Nucleation seeding with calcium silicate hydrate: A review. Cement and Concrete Research, 113, 74-85.
  14. Kacker, R., Maass, S., Emmerich, J., & Kramer, H. (2018). Application of inline imaging for monitoring crystallization process in a continuous oscillatory baffled crystallizer. AIChE Journal, 64(7), 2450-2461.
  15. Khaliq, W., & Khan, H. A. (2015). High temperature material properties of calcium aluminate cement concrete. Construction and Building Materials, 94, 475-487.
  16. Kim, G. M., Park, S. M., & Park, S. W. (2023). Chloride removal of calcium aluminate cements: Reaction and physicochemical characteristics. Case Studies in Construction Materials, 18, e01975.
  17. Kirca, O., Yaman, I. O., & Tokyay, M. (2013). Compressive strength development of calcium aluminate cement-GGBFS blends. Cement and concrete composites, 35(1), 163-170.
  18. Krautwurst, N., Nicoleau, L., Dietzsch, M., Lieberwirth, I., Labbez, C., Fernandez-Martinez, A., ... & Tremel, W. (2018). Two-step nucleation process of calcium silicate hydrate, the nanobrick of cement. Chemistry of Materials, 30(9), 2895-2904.
  19. Li, H., Li, J., Bodycomb, J., & Patience, G. S. (2019). Experimental methods in chemical engineering: particle size distribution by laser diffraction-PSD. The Canadian Journal of Chemical Engineering, 97(7), 1974-1981.
  20. Loge, I. A., Anabaraonye, B. U., Bovet, N., & Fosbol, P. L. (2023). Crystal nucleation and growth: Supersaturation and crystal resilience determine stickability. Crystal Growth & Design, 23(4), 2619-2627.
  21. Pollmann, H. (2012). Calcium aluminate cements-raw materials, differences, hydration and properties. Reviews in Mineralogy and Geochemistry, 74(1), 1-82.
  22. Prasittisopin, L., & Sereewatthanawut, I. (2019). Dissolution, nucleation, and crystal growth mechanism of calcium aluminate cement. Journal of Sustainable Cement-Based Materials, 8(3), 180-197.
  23. Puerta-Falla, G., Kumar, A., Gomez-Zamorano, L., Bauchy, M., Neithalath, N., & Sant, G. (2015). The influence of filler type and surface area on the hydration rates of calcium aluminate cement. Construction and Building Materials, 96, 657-665.
  24. Qi, C., Spagnoli, D., & Fourie, A. (2020). Structural, electronic, and mechanical properties of calcium aluminate cements: Insight from first-principles theory. Construction and Building Materials, 264, 120259.
  25. Saridakis, E., Dierks, K., Moreno, A., Dieckmann, M. W., & Chayen, N. E. (2002). Separating nucleation and growth in protein crystallization using dynamic light scattering. Acta Crystallographica Section D: Biological Crystallography, 58(10), 1597-1600.
  26. Scherer, G. W., Zhang, J., & Thomas, J. J. (2012). Nucleation and growth models for hydration of cement. Cement and Concrete Research, 42(7), 982-993.
  27. Schonlein, M., & Plank, J. (2018). A TEM study on the very early crystallization of CSH in the presence of polycarboxylate superplasticizers: Transformation from initial CSH globules to nanofoils. Cement and Concrete Research, 106, 33-39.
  28. Schubert, R., Meyer, A., Baitan, D., Dierks, K., Perbandt, M., & Betzel, C. (2017). Real-time observation of protein dense liquid cluster evolution during nucleation in protein crystallization. Crystal Growth & Design, 17(3), 954-958.
  29. Seo, J., Nawaz, A., Jang, J. G., & Lee, H. K. (2022). Modifications in hydration kinetics and characteristics of calcium aluminate cement upon blending with calcium sulfoaluminate cement. Construction and Building Materials, 342, 127958.
  30. Sereewatthanawut, I., & Prasittisopin, L. (2022). Effects of accelerating and retarding agents on nucleation and crystal growth of calcium aluminate cement. Open Ceramics, 11, 100290.
  31. Stecher, J., & Plank, J. (2020). Adsorbed layer thickness of polycarboxylate and polyphosphate superplasticizers on polystyrene nanoparticles measured via dynamic light scattering. Journal of colloid and interface science, 562, 204-212.
  32. Tobler, D. J., Shaw, S., & Benning, L. G. (2009). Quantification of initial steps of nucleation and growth of silica nanoparticles: An in-situ SAXS and DLS study. Geochimica et Cosmochimica Acta, 73(18), 5377-5393.
  33. Ukrainczyk, N. (2014). Chemical shrinkage during hydration reactions of calcium aluminate cement. Austin J. Chem. Eng, 1(1).
  34. Vehmas, T., Kronlof, A., & Cwirzen, A. (2017). Effect of additional surfaces on ordinary portland cement early-age hydration. Materials Sciences and Applications, 8(12), 859.
  35. Win, T. T., Prasittisopin, L., Jongvivatsakul, P., & Likitlersuang, S. (2024). Investigating the role of steel and polypropylene fibers for enhancing mechanical properties and microstructural performance in mitigating conversion effects in calcium aluminate cement. Construction and Building Materials, 430, 136515.
  36. Zheng, T., Bott, S., & Huo, Q. (2016). Techniques for accurate sizing of gold nanoparticles using dynamic light scattering with particular application to chemical and biological sensing based on aggregate interfaces, 8(33), 21585-21594.