정화곤란부지 중금속 오염토양의 원위치 안정화를 위한 최적 안정화제 선정에 관한 제언

Recommendation for selecting the optimal stabilizing agent for in situ stabilization of metal-contaminated soil at difficult-to-remediate sites

  • 김하은 (한양대학교 ERICA 스마트시티공학과) ;
  • 이재희 (한양대학교 ERICA 건설환경시스템공학과) ;
  • 윤상규 (한양대학교 ERICA 스마트시티공학과) ;
  • 안진성 (한양대학교 ERICA 스마트시티공학과)
  • Kim, Haeun ;
  • Lee, Jaehui ;
  • Yoon, Sang-Gyu ;
  • An, Jinsung
  • 발행 : 2024.06.30

초록

정화곤란부지 내 중금속(Pb) 오염토양의 원위치 안정화를 위한 최적 안정화제 선정의 일환으로, 문헌조사를 통해 선정한 3종의 후보 안정화제(mono ammonium phosphate (MAP), iron(III) phosphate (IP) 및 gypsum)에 대해 납에 대한 등온흡착실험을 실시했다. Langmuir 등온흡착식을 적용하여 산출된 각 안정화제의 납 최대흡착량은 MAP, IP 및 gypsum에서 각각 391, 42.4 및 32.2 mg/g으로 나타났다. Freundlich 상수(KF; 단위 = mg(1-1/n)·L1/n/g) 또한 MAP, IP 및 gypsum에서 각각 72.8, 24.5 및 14.3을 나타내, 최대흡착량 및 흡착 친화도 측면에서 MAP가 납의 안정화에 가장 적합함을 확인했다. 3종의 후보 안정화제가 적용된 납 오염토양에 대해 fluorescein diacetate (FDA) 가수분해효소 활성도 평가를 실시하여 안정화제의 적용이 토양의 생태학적 기능에 미치는 영향을 정량화했다. 안정화를 진행하지 않은 대조군 토양의 경우 FDA 가수분해효소의 활성을 지시하는 토양중 fluorescein의 농도가 0.239 mg/g·h을 나타냈으며, MAP, IP 및 gypsum으로 안정화된 토양에서는 각각 0.026, 0.135 및 0.073 mg/g·h를 나타냈다. 안정화제를 첨가한 모든 토양에서 대조군에 비해 FDA 가수분해효소의 활성이 감소했으며, 이는 안정화제 첨가로 인한 토양 염류농도의 증가에 따른 염 스트레스의 영향으로 추정된다. 정화곤란부지 위해도 저감조치로서의 안정화 공법 고려 시, 안정화 처리 이후 대상 중금속이 안정한 형태로 유지되어 낮은 화학적 추출능을 나타내는지 여부도 중요하지만, 잔류 중금속 또는 주입한 안정화제 함유물질 및 중화제 등이 야기할 수 있는 토양 생태계에의 부정적 영향 또한 반드시 고려해야 함을 확인했다.

키워드

참고문헌

  1. Adam et al., 2001. Development of a sensitive and rapid method for the measurement of total microbial activity using fluorescein diacetate (FDA) in a range of soils. Soil biology and biochemistry, 33(7-8), 943-951.
  2. An et al., 2017. Risk mitigation measures in arsenic-contaminated soil at the forest area near the former janghang smelter site: applicability of stabilization technique and follow-up management plan. J. Soil Groundwater Environ. 22(6). 1-11.
  3. An et al., 2019. Evaluation of the effectiveness of in situ stabilization in the field aged arsenic-contaminated soil: chemical extractability and biological response. Journal of Hazardous Materials. 367. 137-143.
  4. Brown et al., 2005. An inter-laboratory study to test the ability of amendments to reduce the availability of Cd, Pb, and Zn in situ. Environmental Pollution. 138(1). 34-45.
  5. Chrysochoou et al., 2007. Phosphate application to firing range soils for Pb immobilization: The unclear role of phosphate. Journal of Hazardous Materials. 144(1-2). 1-14.
  6. Green et al., 2006. Assay for fluorescein diacetate hydrolytic activity: optimization for soil samples. Soil Biology and Biochemistry, 38(4), 693-701.
  7. Halim et al., 2005. Evaluating the applicability of regulatory leaching tests for assessing the hazards of Pb-contaminated soils. Journal of Hazardous Materials. 120(1-3). 101-111.
  8. Hettiarachchi et al., 2004. Soil lead bioavailability and in situ remediation of lead contaminated soils: a review. Environmental Progress. 23(1). 78-93.
  9. Hong et al., 1998. 시설재배지토양의 이화학적 특성변화. 한국농공학회지, 40(1), 88-95.
  10. Huang et al., 2021. A state-of-the-art review of polymers used in soil stabilization. Construction and Building Materials. 305. 124685.
  11. Jeon et al., 2010. Applicability test of various stabilizers for heavy metals contaminated soil from smelter area. Journal of the Korean GEO-environmental Society, 11(11), 63-75.
  12. Kastury et al., 2019. Relationship between Pb relative bioavailability and bioaccessibility in phosphate amended soil: Uncertainty associated with predicting Pb immobilization efficacy using in vitro assays. Environment International, 131, 104967.
  13. Koralegedara et al., 2016. Alterations of lead speciation by sulfate from addition of flue gas desulfurization gypsum (FGDG) in two contaminated soils. Science of The Total Environment, 575, 1522-1529.
  14. Li et al., 2011. 폐자원을 이용한 사격장 토양내 중금속 (Pb, Cu) 안정화 처리. 대한환경공학회지, 33(2), 71-76.
  15. Li et al., 2020. Experimental Study on Solidification and Stabilization of Heavy-Metal-Contaminated Soil Using Cementitious Materials. Materials, 14(17), 4999.
  16. Liu et al., 2007. Reducing leachability and bioaccessibility of lead in soils using a new class of stabilized iron phosphate nanoparticles. Water Research, 41(12), 2491-2502.
  17. Liu et al., 2013. Synthesis and characterization of a new class of stabilized apatite nanoparticles and applying the particles to in situ Pb immobilization in a fire-range soil. Chemosphere, 91(5), 594-601.
  18. Luo et al., 2016. Investigation of Pb species in soils, celery and duckweed by synchrotron radiation X-ray absorption near-edge structure spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 122, 40-45.
  19. Nabulo et al., 2010. Assessing risk to human health from tropical leafy vegetables grown on contaminated urban soils. Science of The Total Environment, 408(22), 5338-5351.
  20. Na et al., 2011. Applicability of theoretical adsorption models for studies on adsorption properties of adsorbents(1). J Korean Soc Environ Eng. 46(4). 199-130.
  21. Park et al., 2024. Effects of in situ Fe oxide precipitation on As stabilization and soil ecological resilience under salt stress. Journal of Hazardous Materials, 462, 132629.
  22. Ren et al., 2023. Solidification/stabilization of lead contaminated soils by phosphogypsum slag based cementitious materials. Science of The Total Environment. 857(3). 159552.
  23. Rietz et al., 2003. Effects of irrigation-induced salinity and sodicity on soil microbial activity. Soil Biology and Biochemistry, 35(6), 845-854.
  24. Sardar et al., 2007. Soil enzymatic activities and microbial community structure with different application rates of Cd and Pb. Journal of Environmental Sciences, 19(7), 834-840.
  25. Vrinceanu et al., 2019. Assessment of using bentonite, dolomite, natural zeolite and manure for the immobilization of heavy metals in a contaminated soil: The Copsa Mica case study (Romania). CATENA, 176, 336-342.
  26. Wang et al., 2019. Green remediation of As and Pb contaminated soil using cement-free clay-based stabilization/solidification. Environment International, 126, 336-345.
  27. Xu et al., 2021. Chemical stabilization remediation for heavy metals in contaminated soils on the latest decade: available stabilizing meterials and associated evaluation methods-a critical review. Journal of Cleaner Production. 321. 128730.
  28. Yuan et al., 2007. Microbial biomass and activity in salt affected soils under arid conditions. Applied Soil Ecology, 35(2), 319-328.
  29. Zeng et al., 2017. Precipitation, adsorption and rhizosphere effect: The mechanisms for Phosphate-induced Pb immobilization in soils-a review. Journal of Hazardous Materials. 339. 354-367.