DOI QR코드

DOI QR Code

Fungal Microbiome of Alive and Dead Korean Fir in its Native Habitats

  • Young-Hyun You (Biological Resources Utilization Division, National Institute of Biological Resources) ;
  • Jong Myong Park (Water Quality Research Institute, Waterworks Headquarters Incheon Metropolitan City) ;
  • Youn-Bong Ku (Biological Resources Utilization Division, National Institute of Biological Resources) ;
  • Tae-Yong Jeong (Department of Environmental Science, College of Natural Sciences, Hankuk University of Foreign Studies) ;
  • Kyeongmo Lim (Department of Applied Biosciences, Kyungpook National University) ;
  • Jae-Ho Shin (Department of Applied Biosciences, Kyungpook National University) ;
  • Jin-Suk Kim (Korea Fern Research Society) ;
  • Ji Won Hong (Department of Hydrogen and Renewable Energy, Kyungpook National University)
  • 투고 : 2023.08.25
  • 심사 : 2024.01.15
  • 발행 : 2024.01.31

초록

A rapid decline of Abies koreana has been reported in most of the natural alpine habitats in Korea. It is generally accepted that this phenomenon is due to climate change even though no clear conclusions have been drawn. Most research has focused on abiotic environmental factors, but studies on the relationships between A. koreana and soil fungal microbiomes are scarce. In this study, the rhizoplane and rhizosphere fungal communities in the alive and dead Korean fir trees from its three major natural habitats including Mt. Deogyu, Mt. Halla, and Mt. Jiri in Korea were investigated to identify specific soil fungal groups closely associated with A. koreana. Soil fungal diversity in each study site was significantly different from another based on the beta diversity calculations. Heat tree analysis at the genus level showed that Clavulina, Beauveria, and Tomentella were most abundant in the healthy trees probably by forming ectomycorrhizae with Korean fir growth and controlling pests and diseases. However, Calocera, Dacrymyces, Gyoerffyella, Hydnotrya, Microdochium, Hyaloscypha, Mycosymbioces, and Podospora were abundant in the dead trees. Our findings suggested that Clavulina, Beauveria, and Tomentella are the major players that could be considered in future reforestation programs to establish ectomycorrhizal networks and promote growth. These genera may have played a significant role in the survival and growth of A. koreana in its natural habitats. In particular, the genus Gyoerffyella may account for the death of the seedlings. Our work presented exploratory research on the specific fungal taxa associated with the status of A. koreana.

키워드

과제정보

T.Y.J. was supported by the Hankuk University of Foreign Studies Research Fund (20231288001).

참고문헌

  1. Koo KA, Kim J, Kong WS, et al. Projecting the potential distribution of Abies koreana in Korea under the climate change based on RCP scenarios. J Korean Environ Restor Technol. 2016;19(6):19-30. doi: 10.13087/kosert.2016.19.6.19.
  2. Seo JW, Choi EB, Park JH, et al. The role of aging and wind in inducing death and/or growth reduction in Korean fir (Abies koreana Wilson) on Mt. Halla, Korea. Atmosphere. 2021;12(9):1135. doi: 10.3390/ atmos12091135.
  3. Shin S, Kim JH, Dang JH, et al. Elevational distribution ranges of vascular plant species in the Baekdudaegan Mountain range, South Korea. J Ecol Environ. 2021;45:7. doi: 10.1186/s41610-021-00182-1.
  4. Wilson EH. Four new conifers from Korea. J Arnold Arbor. 1920;1(3):186-190. doi: 10.5962/p.185149.
  5. National Institute of Forest Science. Korean fir in Hallasan Mountain, the tale of tree: life and death of Korean fir. Seoul, South Korea: National Institute of Forest Science; 2015.
  6. Kim TG, Oh JG. Analysis of the location environment of the sub-alpine coniferous forest in national parks using GIS - focusing on Abies koreana. Korean J Ecol Environ. 2016;49(3):236-243. doi: 10.11614/KSL.2016.49.3.236.
  7. Ahn US, Yun YS. Causes of decline in the Korean fir based on spatial distribution in the Mt. Halla region in Korea: a meta-analysis. Forests. 2020;11(4):391. doi: 10.3390/f11040391.
  8. Kim YS, Chang CS, Kim CS, et al. Abies koreana. The IUCN red list of threatened species; 2011. e.T31244A9618913.
  9. IUCN. The IUCN red list of threatened species. Version 2022-2; 2023 [cited 2023 Jul 18]. Available from: http://www.iucnredlist.org/details/31244/0
  10. National Institute of Biological Resources. Korean red list of threatened species. 2nd ed. Incheon, Korea: Jisungsa Publishing Co.; 2014.
  11. Hwang JE, Kim YJ, Shin MH, et al. A comprehensive analysis of the Korean fir (Abies koreana) genes expressed under heat stress using transcriptome analysis. Sci Rep. 2018;8(1):10233. doi: 10.1038/s41598-018-28552-1.
  12. Koo KA, Kim DB. Review forty-year studies of Korean fir (Abies koreana Wilson). Korean J Environ Ecol. 2020;34(5):358-371. doi: 10.13047/KJEE.2020.34.5.358.
  13. Kim CH. Vegetation change and growing characteristics by altitude of Abies koreana forest in Mt. Jiri National Park - the case of trail in Georim Valley-Sesuk Shelter [M.Sc. thesis]. South Korea: Gyeongsang National University; 2012.
  14. Kim JK, Koh JG, Yim HT, et al. Changes of spatial distribution of Korean fir forest in Mt. Hallasan for the past 10 years (2006, 2015). Korean J Environ Ecol. 2017;31(6):549-556. doi: 10.13047/KJEE.2017.31.6.549.
  15. Park WK, Seo JW. A dendroclimatic analysis on Abies koreana in Cheonwang-Bong area of Mt. Chiri, Korea. Korean J Quat Res. 1999;13:25-33.
  16. Koo KA, Park WK, Kong WS. Dendrochronological analysis of Abies koreana W. at Mt. Halla, Korea: effects of climate change on the growths. Korean J Ecol. 2001;24:281-288.
  17. Lim JH, Woo SY, Kwon MJ, et al. Photosynthetic capacity and water use efficiency under different temperature regimes on healthy and declining Korean fir in Mt. Halla. J Korean For Soc. 2006;95:705-710.
  18. Kim JG. Study on environmental factors affecting the temporal and spatial distribution of Abies koreana and Pinus densiflora in Mt Hallasan [Ph.D. thesis]. South Korea: Jeju National University; 2022.
  19. National Institute of Forest Science. Korean fir Hallasan Mountain, why are they dying? Seoul, South Korea: National Institute of Forest Science; 2016.
  20. Woo SY. Forest decline of the world: a linkage with air pollution and global warming. Afr J Biotechnol. 2009;8:7409-7414.
  21. Hong YP, Ahn JY, Kim YM, et al. Genetic variation of nSSR markers in natural populations of Abies koreana and Abies nephrolepis in South Korea. J Korean For Soc. 2011;100:577-584.
  22. Sim MY, Eo JK, Eom AH. Diversity of ectomycorrhizal fungi of Abies koreana at Mt. Halla. Kor J Mycol. 2009;37(2):134-138. doi: 10.4489/KJM.2009.37.2.134.
  23. Lee JE, Eom AH. Ectomycorrhizal fungal diversity on Abies koreana and Taxus cuspidata at two altitudes in Mt. Halla. Kor J Mycol. 2019;47:199-208.
  24. Kim CS, Jo JW, Lee H, et al. Comparison of soil higher fungal communities between dead and living Abies koreana in Mt. Halla, the Republic of Korea. Mycobiology. 2020;48(5):364-372. doi: 10.1080/12298093.2020.1811193.
  25. Ramesh T, Bolan NS, Kirkham MB, et al. Chapter one - soil organic carbon dynamics: impact of land use changes and management practices: a review. In: Sparks DL, editor. Advances in agronomy. Cambridge (MA): Academic Press; 2019. p. 107. doi: 10.1016/bs.agron.2019.02.001.
  26. Tiwari P, Bose SK, Bae H. Plant growth-promoting soil microbiomes: beneficial attributes and potential applications. In: Yadav AN, editor. Soil microbiomes for sustainable agriculture. Sustainable development and biodiversity. Cham, Switzerland: Springer Nature Switzerland AG; 2021. p. 634.
  27. Chaparro JM, Sheflin AM, Manter DK, et al. Manipulating the soil microbiome to increase soil health and plant fertility. Biol Fertil Soils. 2012;48(5):489-499. doi: 10.1007/s00374-012-0691-4.
  28. Baldrian P. Forest microbiome: diversity, complexity and dynamics. FEMS Microbiol Rev. 2017;41(2):109-130. doi: 10.1093/femsre/fuw040.
  29. Rashid MM, Akhtar N, Teli B, et al. Manoeuvring soil microbiome and their interactions: a resilient technology for conserving soil and plant health. In: Nath M, Bhatt D, Bhargava P, et al., editors. Microbial meta-transcriptomics belowground. Singapore, Singapore: Springer Nature Singapore Pte. Ltd.; 2021. p. 679. doi: 10.1007/978-981-15-9758-9_19.
  30. van der Heijden MGA, Bardgett RD, van Straalen NM. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett. 2008;11(3):296-310. doi: 10.1111/j.1461-0248.2007.01139.x.
  31. Lang C, Seven J, Polle A. Host preferences and differential contributions of deciduous tree species shape mycorrhizal species richness in a mixed Central European forest. Mycorrhiza. 2011;21(4):297-308. doi: 10.1007/s00572-010-0338-y.
  32. Liu Y, Wang S, Wang Z, et al. Soil microbiome mediated nutrients decline during forest degradation process. Soil Ecol Lett. 2019;1(1-2):59-71. doi: 10.1007/s42832-019-0009-7.
  33. Khade SW, Rodrigues BF. Applications of arbuscular mycorrhizal fungi in agroecosystems. Trop Subtrop Agroecosyst. 2009;10:337-354.
  34. Allen MF, Swenson W, Querejeta JI, et al. Ecology of mycorrhizae: a conceptual framework for complex interactions among plants and fungi. Annu Rev Phytopathol. 2003;41(1):271-303. doi: 10.1146/annurev.phyto.41.052002.095518.
  35. Smith SE, Read DJ. Mycorrhizal symbiosis. 3rd ed. London (UK): Academic Press; 2008. p. 107.
  36. Toju H, Sato H. Root-associated fungi shared between arbuscular mycorrhizal and ectomycorrhizal conifers in a temperate forest. Front Microbiol. 2018;9:433. doi: 10.3389/fmicb.2018.00433.
  37. Niemi K, Scagel C, Haggman H. Application of ectomycorrhizal fungi in vegetative propagation of conifers. Plant Cell Tiss Org Cult. 2004;78(1):83-91. doi: 10.1023/B:TICU.0000020379.52514.72.
  38. Smith JE, McKay D, Brenner G, et al. Early impacts of forest restoration treatments on the ectomycorrhizal fungal community and fine root biomass in a mixed conifer forest. J Appl Ecol. 2005;42(3):526-535. doi: 10.1111/j.1365-2664.2005.01047.x.
  39. Wazny R. Ectomycorrhizal communities associated with silver fir seedlings (Abies alba Mill.) differ largely in mature silver fir stands and in Scots pine forecrops. Ann For Sci. 2014;71(7):801-810. doi: 10.1007/s13595-014-0378-0.
  40. Rudawska M, Pietras M, Smutek I, et al. Ectomycorrhizal fungal assemblages of Abies alba Mill. outside its native range in Poland. Mycorrhiza. 2016;26(1):57-65. doi: 10.1007/s00572-015-0646-3.
  41. Han G, Mannaa M, Jeon H, et al. Dysbiosis in the rhizosphere microbiome of standing dead Korean fir (Abies koreana). Plants. 2022;11(7):990. doi: 10.3390/plants11070990.
  42. Rural Development Administration. Analysis manual of comprehensive examination laboratory (soil, plant, water and liquid manure). Suwon, South Korea: Rural Development Administration; 2013. p. 31-53.
  43. Jeong M, Tagele SB, Kim MJ, et al. The death of Korean fir (Abies koreana) affects soil symbiotic fungal microbiome: preliminary findings. Front For Glob Change. 2023;5:1114390. doi: 10.3389/ffgc.2022.1114390.
  44. Bolyen E, Rideout JR, Dillon MR, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37(8):852-857. doi: 10.1038/s41587-019-0209-9.
  45. Nilsson RH, Larsson KH, Taylor AFS, et al. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 2019;47(D1):D259-D264. doi: 10.1093/nar/gky1022.
  46. Zakrzewski M, Proietti C, Ellis JJ, et al. Calypso: a user-friendly web-server for mining and visualizing microbiome-environment interactions. Bioinformatics. 2019;33(5):782-783. doi: 10.1093/bioinformatics/btw725.
  47. Oksanen J, Simpson GL, Blanchet FG vegan: community ecology package. R package version 2.5-6; 2019. Available from: https://CRAN.R-project.org/package=vegan
  48. Kolde R. pheatmap: pretty heatmaps. R package version 1.0. 12; 2019. https://CRAN.R-project.org/package=pheatmap
  49. Foster ZSL, Sharpton TJ, Grunwald NJ. Metacoder: anr package for visualization and manipulation of community taxonomic diversity data. PLoS Comput Biol. 2017;13(2):e1005404. doi: 10.1371/journal.pcbi.1005404.
  50. Park HC, Lee JH, Lee GG, et al. Environmental features of the distribution areas and climate sensitivity assessment of Korean fir and Khinghan fir. J Environ Impact Assess. 2015;24(3):260-277. doi: 10.14249/eia.2015.24.3.260.
  51. Park BJ, Kim JD, Lee JW, et al. A study on correlation between species composition and environmental factors in Abies koreana forest. Korean J Plant Res. 2021;34:144-155. doi: 10.7732/kjpr.2021.34.2.144.
  52. Ahn US, Kim DS, Yun YS, et al. The inference about the cause of death of Korean fir in Mt. Halla through the analysis of spatial dying pattern - proposing the possibility of excess soil moisture by climate changes. Korean J Agric For Meteorol. 2019;21:1-28.
  53. Jeong JH, Koo KS, Lee CH, et al. Physico-chemical properties of Korean forest soils by regions. J Korean For Soc. 2002;91:694-700.
  54. Lee CY. Forest environmental soil. Seoul, South Korea: Boseungmoonhwasa Publishing; 2000. p. 350.
  55. Cho MG, Chung J, Kim TW, et al. Ecological characteristics of Abies koreana forest on Seseok in Mt. Jiri. J Clim Change Res. 2015;6(4):379-388. doi: 10.15531/ksccr.2015.6.4.379.
  56. Curtin D, Beare MH, Hernandez-Ramirez G. Temperature and moisture effects on microbial biomass and soil organic matter mineralization. Soil Sci Soc Am J. 2012;76(6):2055-2067. doi: 10.2136/sssaj2012.0011.
  57. Mu C, Zhang T, Zhang X, et al. Sensitivity of soil organic matter decomposition to temperature at different depths in permafrost regions on the Northern Qinghai-Tibet Plateau. Eur J Soil Sci. 2016;67(6):773-781. doi: 10.1111/ejss.12386.
  58. Takahashi T. The diversity of volcanic soils: focusing on the function of aluminum-humus complexes. Soil Sci Plant Nutr. 2020;66(5):666-672. doi: 10.1080/00380768.2020.1769453.
  59. Kwon MJ. The causes of forest decline on Abies koreana stand in Mt Halla [M.Sc. thesis]. South Korea: University of Seoul; 2006.
  60. Lim JH, Woo SY, Kwon MJ, et al. Antioxidant enzyme activities and soil properties of healthy and declining Abies koreana (Wils.) in Mt. Halla. J Korean For Soc. 2007;96:14-20.
  61. Park CG. Soil characteristics and community structure of Abies koreana forests in Banyabong, Mt Jiri [M.Sc. Thesis]. Sunchon National University; 2011.
  62. Hart SC, Nason G, Myrold DD, et al. Dynamics of gross nitrogen transformations in an old-growth forest: the carbon connection. Ecology. 1994;75(4):880- 891. doi: 10.2307/1939413.
  63. Aber J, McDowell W, Nadelhoffer K, et al. Nitrogen saturation in temperate forest ecosystems: hypotheses revisited. BioScience. 1998;48(11):921-934. doi: 10.2307/1313296.
  64. Palmer J, Thorburn PJ, Biggs JS, et al. Nitrogen cycling from increased soil organic carbon contributes both positively and negatively to ecosystem services in wheat agro-ecosystems. Front Plant Sci. 2017;8:731. doi: 10.3389/fpls.2017.00731.
  65. Jung MH, Ko JI, Bak GI, et al. Analysis of soil chemical characteristics changes according to elapsed time after the forest rehabilitation for drawing management of abandoned coal mine forest rehabilitation areas in Gangwon-do. Econ Environ Geol. 2021;54(4):457-464. doi: 10.9719/EEG.2021.54.4.457.
  66. Marx ES, Hart J, Stevens RG. Soil test interpretation guide. Corvallis (OR): Oregon State University Extension Services; 1999. p. 1-8.
  67. National Institute of Forest Science. Research material no. 1004. Site characteristics and stand structure of Quercus mongolica forests in Korea. Seoul (South Korea); 2022.
  68. Penn CJ, Camberato JJ. A critical review on soil chemical processes that control how soil pH affects phosphorus availability to plants. Agriculture. 2019;9(6):120. doi: 10.3390/agriculture9060120.
  69. Johan PD, Ahmed OH, Omar L, et al. Phosphorus transformation in soils following co-application of charcoal and wood ash. Agronomy. 2021;11(10):2010. doi: 10.3390/agronomy11102010.
  70. National Institute of Forest Science. Evaluation of forest soil properties. Seoul, South Korea: National Institute of Forest Science; 2018.
  71. Emmanuel S, Erel Y. Implications from concentrations and isotopic data for Pb partitioning processes in soils. Geochim Cosmochim Acta. 2002;66(14):2517-2527. doi: 10.1016/S0016-7037(02)00863-3.
  72. Eduardo PP, Margarita VR, Roberto GO, et al. Two new species of Clavulina and the first record of Clavulina reae from temperate Abies religiosa forests in Central Mexico. Mycol Progress. 2019;18(9):1187-1200. doi: 10.1007/s11557-019-01516-z.
  73. Henkel TW, Meszaros R, Aime MC, et al. New Clavulina species from the Pakaraima mountains of Guyana. Mycol Progress. 2005;4(4):343-350. doi: 10.1007/s11557-006-0140-6.
  74. Henkel TW, Aime MC, Uehling JK, et al. New species and distribution records of Clavulina (Cantharellales, Basidiomycota) from the Guiana Shield. Mycologia. 2011;103(4):883-894. doi: 10.3852/10-355.
  75. Uehling JK, Henkel TW, Aime MC, et al. New species of Clavulina (Cantharellales, Basidiomycota) with resupinate and effused basidiomata from the Guiana Shield. Mycologia. 2012;104(2):547-556. doi: 10.3852/11-130.
  76. Olariaga I, Jugo BM, Garcia-Etxebarria K, et al. Species delimitation in the European species of Clavulina (Cantharellales, Basidiomycota) inferred from phylogenetic analyses of ITS region and morphological data. Mycol Res. 2009;113(11):1261-1270. doi: 10.1016/j.mycres.2009.08.008.
  77. He G, Chen SL, Yan SZ. Morphological and molecular evidence for a new species in Clavulina from southwestern China. Mycoscience. 2016;57(4):255-263. doi: 10.1016/j.myc.2016.03.002.
  78. Buee M, Vairelles D, Garbaye J. Year-round monitoring of diversity and potential metabolic activity of the ectomycorrhizal community in a beech (Fagus sylvatica) forest subjected to two thinning regimes. Mycorrhiza. 2005;15(4):235-245. doi: 10.1007/s00572-004-0313-6.
  79. Moyersoen B. Pakaraimaea dipterocarpacea is ectomycorrhizal, indicating an ancient Gondwanaland origin for the ectomycorrhizal habit in Dipterocarpaceae. New Phytol. 2006;172(4):753-762. doi: 10.1111/j.1469-8137.2006.01860.x.
  80. Tedersoo L, Smith ME. Lineages of ectomycorrhizal fungi revisited: foraging strategies and novel lineages revealed by sequences from belowground. Fungal Biol Rev. 2013;27(3-4):83-99. doi: 10.1016/j.fbr.2013.09.001.
  81. Arguelles-Moyao A, Garibay-Orijel R, Marquez-Valdelamar LM, et al. Clavulina-Membranomyces is the most important lineage within the highly diverse ectomycorrhizal fungal community of Abies religiosa. Mycorrhiza. 2017;27(1):53-65. doi: 10.1007/s00572-016-0724-1.
  82. Lee JE, Eom AH. Diversity and community structure of ectomycorrhizal mycorrhizal fungi in roots and rhizosphere soil of Abies koreana and Taxus cuspidata in Mt. Halla. Mycobiology. 2022;50(6):448-456. doi: 10.1080/12298093.2022.2161974.
  83. Ortiz-Urquiza A, Keyhani NO. Molecular genetics of Beauveria bassiana infection of insects. Adv Genet. 2016;94:165-249. doi: 10.1016/bs.adgen.2015.11.003.
  84. Ortiz-Urquiza A, Luo Z, Keyhani NO. Improving mycoinsecticides for insect biological control. Appl Microbiol Biotechnol. 2015;99(3):1057-1068. doi: 10.1007/s00253-014-6270-x.
  85. McKinnon AC, Saari S, Moran-Diez ME, et al. Beauveria bassiana as an endophyte: a critical review on associated methodology and biocontrol potential. BioControl. 2017;62(1):1-17. doi: 10.1007/s10526-016-9769-5.
  86. Ortiz-Urquiza A. The split personality of Beauveria bassiana: understanding the molecular basis of fungal parasitism and mutualism. mSystems. 2021;6(4):e0076621. doi: 10.1128/mSystems.00766-21.
  87. Vega FE. The use of fungal entomopathogens as endophytes in biological control: a review. Mycologia. 2018;110(1):4-30. doi: 10.1080/00275514.2017.1418578.
  88. Barra-Bucarei L, Gonzalez MG, Iglesias AF, et al. Beauveria bassiana multifunction as an endophyte: growth promotion and biologic control of Trialeurodes vaporariorum, (Westwood) (Hemiptera: Aleyrodidae) in tomato. Insects. 2020;11(9):591. doi: 10.3390/insects11090591.
  89. Ramakuwela T, Hatting J, Bock C, et al. Establishment of Beauveria bassiana as a fungal endophyte in pecan (Carya illinoinensis) seedlings and its virulence against pecan insect pests. Biol Control. 2020;140:104102. doi: 10.1016/j.biocontrol.2019.104102.
  90. Jakucs E, Eros-Honti Z. Morphological-anatomical characterization and identification of Tomentella ectomycorrhizas. Mycorrhiza. 2008;18(6-7):277-285. doi: 10.1007/s00572-008-0183-4.
  91. Lu X, Steffen K, Yuan HS. Morphological and molecular identification of three new species of Tomentella from Finland. Mycologia. 2018;110(4):677-691. doi: 10.1080/00275514.2018.1474683.
  92. Lu X, Yuan HS. New species of Tomentella (Thelephorales, Basidiomycota) from temperate continental mountain climate of China (Xinjiang region). Forests. 2021;12(11):1531. doi: 10.3390/f12111531.
  93. Agerer R, Agerer R, Bougher NL, et al. Tomentella subamyloidea sp. nov. and T. radiosa (Thelephoraceae, Hymenomycetes, Basidiomycota) from Australia. Aust Syst Bot. 2001;14(4):607-614. doi: 10.1071/SB00031.
  94. Koljalg U, Dahlberg A, Taylor AF, et al. Diversity and abundance of resupinate thelephoroid fungi as ectomycorrhizal symbionts in Swedish boreal forests. Mol Ecol. 2000;9(12):1985-1996. doi: 10.1046/j.1365-294x.2000.01105.x.
  95. Tedersoo L, Jairus T, Horton BM, et al. Strong host preference of ectomycorrhizal fungi in a Tasmanian wet sclerophyll forest as revealed by DNA barcoding and taxon-specific primers. New Phytol. 2008;180(2):479-490. doi: 10.1111/j.1469-8137.2008.02561.x.
  96. Suvi T, Tedersoo L, Abarenkov K, et al. Mycorrhizal symbionts of Pisonia grandis and P. sechellarum in Seychelles: identification of mycorrhizal fungi and description of new Tomentella species. Mycologia. 2010;102(3):522-533. doi: 10.3852/09-147.
  97. Lu X, Cao T, Nguyễn TTT, et al. Six new species of Tomentella (Thelephorales, Basidiomycota) from tropical pine forests in Central Vietnam. Front Microbiol. 2022;13:864198. doi: 10.3389/fmicb.2022.864198.
  98. Peintner U, Dammrich F. Tomentella alpina and other tomentelloid taxa fruiting in a glacier valley. Mycol Progress. 2012;11(1):109-119. doi: 10.1007/s11557-010-0734-x.
  99. Shirouzu T, Hirose D, Tokumasu S. Taxonomic study of the Japanese Dacrymycetes. Persoonia. 2009;23(1):16-34. doi: 10.3767/003158509X468443.
  100. Shirouzu T, Hosaka K, Nam KO, et al. Phylogenetic relationships of eight new Dacrymycetes collected from New Zealand. Persoonia. 2017;38(1):156-169. doi: 10.3767/003158517X695280.
  101. Li L, Zhao YC, Zhang XL, et al. Hydnotrya laojunshanensis sp. nov. from China. Mycotaxon. 2013;125(1):277-282. doi: 10.5248/125.277.
  102. Stielow B, Bubner B, Hensel G, et al. The neglected hypogeous fungus Hydnotrya bailii Soehner (1959) is a widespread sister taxon of Hydnotrya tulasnei (Berk.) Berk. & Broome (1846). Mycol Progress. 2010;9(2):195-203. doi: 10.1007/s11557-009-0625-1.
  103. Liu S, Liu X, Zhang Z, et al. Three new species of Microdochium (Sordariomycetes, Amphisphaeriales) on Miscanthus sinensis and Phragmites australis from Hainan, China. J Fungi. 2022;8(6):577. doi: 10.3390/jof8060577.
  104. Huang S, Xia J, Zhang X, et al. Two new species of Microdochium from Indocalamus longiauritus in South-Western China. MycoKeys. 2020;72:93-108. doi: 10.3897/mycokeys.72.55445.
  105. Marvanova L, Marvan P, Růžicka J. Gyoerffyella Kol 1928, a genus of the Hyphomycetes. Persoonia. 1967;5:29-44.
  106. Marvanova L. Concerning Gyoerffyella Kol. Trans Br Mycol Soc. 1975;65(3):555-565. doi: 10.1016/S0007-1536(75)80062-3.
  107. Baschien C, Tsui CK, Gulis V, et al. The molecular phylogeny of aquatic hyphomycetes with affinity to the Leotiomycetes. Fungal Biol. 2013;117(9):660-672. doi: 10.1016/j.funbio.2013.07.004.
  108. Jankowiak R, Bilanski P, Paluch J, et al. Fungi associated with dieback of Abies alba seedlings in naturally regenerating Forest ecosystems. Fungal Ecol. 2016;24:61-69. doi: 10.1016/j.funeco.2016.08.013.
  109. Fehrer J, Reblova M, Bambasova V, et al. The root-symbiotic Rhizoscyphus ericae aggregate and Hyaloscypha (Leotiomycetes) are congeneric: phylogenetic and experimental evidence. Stud Mycol. 2019;92(1):195-225. doi: 10.1016/j.simyco.2018.10.004.
  110. Vohnik M, Figura T, Reblova M. Hyaloscypha gabretae and Hyaloscypha gryndleri spp. nov. (Hyaloscyphaceae, Helotiales), two new mycobionts colonizing conifer, ericaceous and orchid roots. Mycorrhiza. 2022;32(1):105-122. doi: 10.1007/s00572-021-01064-z.
  111. Fadaei S, Khan S, Young M, et al. Impact of soil stockpiling on ericoid mycorrhizal colonization and growth of velvetleaf blueberry (Vaccinium myrtilloides) and Labrador tea (Ledum groenlandicum). Restor Ecol. 2021;29(1):e13276. doi: 10.1111/rec.13276.
  112. Matasyoh JC, Dittrich B, Schueffler A, et al. Larvicidal activity of metabolites from the endophytic Podospora sp. against the malaria vector Anopheles gambiae. Parasitol Res. 2011;108(3):561-566. doi: 10.1007/s00436-010-2098-1.