DOI QR코드

DOI QR Code

Notes of Five Wood-Decaying Fungi from Juwangsan National Park in Korea

  • Minseo Cho (Division of Environmental Science and Ecological Engineering, College of Life Sciences and Biotechnology, Korea University) ;
  • Sun Lul Kwon (Division of Environmental Science and Ecological Engineering, College of Life Sciences and Biotechnology, Korea University) ;
  • Changmu, Kim (Species Diversity Research Division, National Institute of Biological Resources) ;
  • Jae-Jin Kim (Division of Environmental Science and Ecological Engineering, College of Life Sciences and Biotechnology, Korea University)
  • Received : 2023.07.12
  • Accepted : 2023.12.20
  • Published : 2024.01.31

Abstract

Wood-decaying fungi are essential decomposers in forest ecosystems. They decompose wood substrates by producing various lignocellulolytic enzymes, which have significant industrial and medical applications. A survey was conducted at the Juwangsan National Park from 2018 to 2019 to determine the diversity of macrofungi in Korea. Five previously unrecorded wood-decaying polyporoid and corticioid fungi were identified among the collected specimens: Eichleriella sinensis, Hymenochaete anomala, Hyphoderma subsetigerum, Lyomyces orientalis, and Pseudowrightoporia crassihypha. These species were identified based on morphological, molecular, and phylogenetic analyses of the internal transcribed spacer (ITS) and nuclear large subunit rDNA (nLSU) region. In this study, we provide detailed macro- and micro-morphological figures with phylogenetic trees to support the discovery of five new species in Korea.

Keywords

Acknowledgement

The authors thank Editage (www.editage.co.kr) for English language editing.

References

  1. Lonsdale D, Pautasso M, Holdenrieder O. Wood-decaying fungi in the forest: conservation needs and management options. Eur J Forest Res. 2008;127(1):1-22. doi: 10.1007/s10342-007-0182-6.
  2. Blanchette RA. Delignification by wood-decay fungi. Annu Rev Phytopathol. 1991;29(1):381-403. doi: 10.1146/annurev.py.29.090191.002121.
  3. Tuor U, Winterhalter K, Fiechter A. Enzymes of white-rot fungi involved in lignin degradation and ecological determinants for wood decay. J Biotechnol. 1995;41(1):1-17. doi: 10.1016/0168-1656(95)00042-O.
  4. Gao D, Du L, Yang J, et al. A critical review of the application of white rot fungus to environmental pollution control. Crit Rev Biotechnol. 2010;30(1):70-77. doi: 10.3109/07388550903427272.
  5. Hakala TK, Maijala P, Konn J, et al. Evaluation of novel wood-rotting polypores and corticioid fungi for the decay and biopulping of Norway spruce (Picea abies) wood. Enzyme Microb Technol. 2004;34(3-4):255-263. doi: 10.1016/j.enzmictec.2003.10.014.
  6. Wasser SP, Weis AL. Medicinal properties of substances occurring in higher basidiomycetes mushrooms: current perspectives. Int J Med Mushrooms. 1999;1(1):31-62. doi: 10.1615/IntJMedMushrooms.v1.i1.30.
  7. Hwang S-K, Kim J-H. Topographical landscapes and their controlling geological factors in the Juwangsan National Park: welding facies and columnar joints. J Petrol Soc Korea. 2009;18:195-209.
  8. Hur T, Jang S. Distribution of higher fungi in Juwangsan National Park. J Korean Inst Forest Recreat. 2011;15:15-20.
  9. Kim Y, Kang G. Floristic study on Juwangsan National Park. Korean J Environ Ecol. 1995;8:81-92.
  10. Ko P-Y, Hong K-S, Choe S-Y, et al. Distribution of spontaneously growing mushrooms in the Juwangsan National Park. J Mushroom. 2018;16:65-69.
  11. Hyde KD, Abd-Elsalam K, Cai L. Morphology: still essential in a molecular world. Mycotaxon. 2011;114(1):439-451. doi: 10.5248/114.439.
  12. Lutzoni F, Kauff F, Cox CJ, et al. Assembling the fungal tree of life: progress, classification, and evolution of subcellular traits. Am J Bot. 2004;91(10):1446-1480. doi: 10.3732/ajb.91.10.1446.
  13. Raja HA, Miller AN, Pearce CJ, et al. Fungal identification using molecular tools: a primer for the Natural Products Research Community. J Nat Prod. 2017;80(3):756-770. doi: 10.1021/acs.jnatprod.6b01085.
  14. Kwon SL, Jang S, Kim C, et al. Note of five unrecorded mushrooms including three rare species on Mount Juwang in Korea. Mycobiology. 2020;48(3):157-168. doi: 10.1080/12298093.2020.1759348.
  15. White TJ, Bruns T, Lee S, et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, et al. editors PCR protocols: a guide to methods and applications. New York (NY): Academic Press; 1990. p. 315-322.
  16. Gardes M, Bruns TD. ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Mol Ecol. 1993;2(2):113-118. doi: 10.1111/j.1365-294x.1993.tb00005.x.
  17. Vilgalys R, Hester M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol. 1990;172(8):4238-4246. doi: 10.1128/jb.172.8.4238-4246.1990.
  18. Hopple JSJr., Vilgalys R. Phylogenetic relationships among coprinoid taxa and allies based on data from restriction site mapping of nuclear rDNA. Mycologia. 1994;86(1):96-107. doi: 10.1080/00275514.1994.12026378.
  19. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30(4):772-780. doi: 10.1093/molbev/mst010.
  20. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30(9):1312-1313. doi: 10.1093/ bioinformatics/btu033.
  21. Miller MA, Pfeiffer W, Schwartz T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Proceedings of the Gateway Computing Environments Workshop (GCE) New Orleans (Lousiana): Institute of Electrical and Electronics Engineers (IEEE); 2010. p. 1-8.
  22. Color BM. Munsell soil-color charts with genuine Munsell®  color chips. Grand Rapids (MI): Munsell Color; 2009.
  23. Li Y, Nie T, Nakasone KK, et al. Taxonomy and phylogeny of corticioid fungi in Auriculariaceae (Auriculariales, Basidiomycota): a new genus, five new species and four new combinations. J Fungi. 2023;9(3):318. doi: 10.3390/jof9030318.
  24. Wang H, Wang D-Q, Zhao C-L. Eichleriella aculeobasidiata sp. nov. (Auriculariales, Basidiomycota) evidenced by morphological characters and phylogenetic analyses in China. Kew Bull. 2022;77(1):325-332. doi: 10.1007/s12225-022-10001-y.
  25. Roberts P. Caribbean heterobasidiomycetes: 3. British Virgin Islands. Mycotaxon. 2008;105:137-147.
  26. Defigio DA. A taxonomic analysis of the corticate species of the genus Hymenochaete [Ph.D. dissertation]. Illinois State University; 1970.
  27. He S-H, Dai Y-C. Taxonomy and phylogeny of Hymenochaete and allied genera of Hymenochaetaceae (Basidiomycota) in China. Fung Divers. 2012;56(1):77-93. doi: 10.1007/s13225-012-0174-9.
  28. Jang S, Kim C, Kim G, et al. Diversity of basidiomycetous fungi in Mt. Yeonin Provincial Park. Korean J Nat Conserv. 2016;15(1):41-53. doi: 10.30960/kjnc.2016.15.1.41.
  29. Jang Y, Jang S, Lee J, et al. Diversity of wood-inhabiting polyporoid and corticioid fungi in Odaesan National Park, Korea. Mycobiology. 2016;44(4):217-236. doi: 10.5941/MYCO.2016.44.4.217.
  30. Nilsson RH, Hallenberg N, Norden B, et al. Phylogeography of Hyphoderma setigerum (Basidiomycota) in the Northern hemisphere. Mycol Res. 2003;107(Pt 6):645-652. doi: 10.1017/s0953756203007925.
  31. Yurchenko E, Wu S-H. Hyphoderma pinicola sp. nov. of H. setigerum complex (Basidiomycota) from Yunnan, China. Bot Stud. 2014;55(1):71. doi: 10.1186/ s40529-014-0071-5.
  32. Wu S-H. New species of Hyphoderma from Taiwan. Mycologia. 1997;89(1):132-140. doi: 10.1080/00275514. 1997.12026764.
  33. Eriksson J, Ryvarden L. The Corticiaceae of North Europe volume 3, Coronicium-Hyphoderma. Fungiflora Oslo. 1975;3:287-546.
  34. Yurchenko EO, Zmitrovich IV. Variability of Hyphoderma setigerum (Corticiaceae s.l., Basidiomycetes) in Belarus and Northwest Russia. Mycotaxon. 2001;78:423-434.
  35. Yurchenko E, Riebesehl J, Langer E. Clarification of Lyomyces sambuci complex with the descriptions of four new species. Mycol Progress. 2017;16(9):865-876. doi: 10.1007/s11557-017-1321-1.
  36. Chen J-Z, Zhao C-L. Morphological and molecular identification of four new resupinate species of Lyomyces (Hymenochaetales) from Southern China. MycoKeys. 2020;65:101-118. doi: 10.3897/mycokeys.65.48660.
  37. Chen J, Cui B, Dai Y. Global diversity and molecular systematics of Wrightoporia s.l. (Russulales, Basidiomycota). Persoonia. 2016;37(1):21-36. doi: 10.3767/003158516X689666.
  38. Vizzini A, Angelini C, Losi C, et al. Diversity of polypores in the Dominican Republic: Pseudowrightoporia dominicana sp. nov. (Hericiaceae, Russulales). MycoKeys. 2018;34(34):35-45. doi: 10.3897/mycokeys.34.25371.
  39. Nunez M, Ryvarden L. New and interesting polypores from Japan. Fung Divers. 1999;3:107-121.
  40. Cui B-K, Dai Y-C. Wrightoporia (Basidiomycota, Aphyllophorales) in China. Nova Hedwigia. 2006;83(1-2):159-166. doi: 10.1127/0029-5035/2006/0083-0159.
  41. Bernicchia A, Gorjon S. Fungi Europaei 12: Corticiaceae s.l. Lomazzo: Edizioni Candusso; 2010. p. 1-1007.
  42. Dai Y-C. A revised checklist of corticioid and hydnoid fungi in China for 2010. Mycoscience. 2011;52(1):69-79. doi: 10.1007/S10267-010-0068-1.
  43. Cui B-K, Li H-J, Ji X, et al. Species diversity, taxonomy and phylogeny of Polyporaceae (Basidiomycota) in China. Fung Divers. 2019;97(1):137-392. doi: 10.1007/s13225-019-00427-4.
  44. Westphalen MC, Motato-Vasquez V, Tomsovsky M, et al. Additions to the knowledge of hydnoid Steccherinaceae: Cabalodontia, Etheirodon, Metuloidea, and Steccherinum. Mycologia. 2021;113(4):791-806. doi: 10.1080/00275514.2021.1894536.
  45. Wu F, Man X, Tohtirjap A, et al. A comparison of polypore funga and species composition in Forest ecosystems of China, North America, and Europe. Forest Ecosyst. 2022;9:100051. doi: 10.1016/j. fecs.2022.100051.
  46. Wu F, Zhou L-W, Vlasak J, et al. Global diversity and systematics of Hymenochaetaceae with poroid hymenophore. Fung Divers. 2022;113(1):1-192. doi: 10.1007/s13225-021-00496-4.
  47. Luo K-Y, Zhao C-L. Morphology and multigene phylogeny reveal a new order and a new species of wood-inhabiting basidiomycete fungi (Agaricomycetes). Front Microbiol. 2022;13:970731. doi: 10.3389/fmicb.2022.970731.
  48. Malysheva V, Spirin V. Taxonomy and phylogeny of the Auriculariales (Agaricomycetes, Basidiomycota) with stereoid basidiocarps. Fungal Biol. 2017;121(8):689-715. doi: 10.1016/j.funbio.2017.05.001.
  49. Bresadola G. Fungi polonici a cl. Viro B. Eichler lecti: Hayn. Ann Mycol. 1903;1:65-96.
  50. Liu X, Shen S, Zhao C. Morphological and molecular identification of a new species of Eichleriella (Auriculariales, Basidiomycota) in China. Phytotaxa. 2019;404(6):245-254. doi: 10.11646/phytotaxa.404.6.3.
  51. Wei M, Oberwinkler F. Phylogenetic relationships in Auriculariales and related groups -hypotheses derived from nuclear ribosomal DNA sequences. Mycol Res. 2001;105(4):403-415. doi: 10.1017/S095375620100363X.
  52. Miettinen O, Larsson K-H, Spirin V. Hydnoporia, an older name for Pseudochaete and Hymenochaetopsis, and typification of the genus Hymenochaete (Hymenochaetales, Basidiomycota). Fungal Syst Evol. 2019;4:77-96. doi: 10.3114/fuse.2019.04.07.
  53. Dai Y-C. Hymenochaetaceae (Basidiomycota) in China. Fung Divers. 2010;45(1):131-343. doi: 10.1007/s13225-010-0066-9.
  54. Parmasto E. The genus Hymenochaete (Hymenomycetes): infrageneric classification and satellite genera. Doc Mycol. 1995;25:305-315.
  55. Parmasto E. Hymenochaetoid fungi (Basidiomycota) of North America. Mycotaxon. 2001;79:107-176.
  56. Wallroth KFW. Flora cryptogamica Germaniae: Algas et fungos. 2. Norimbergae: Schragius; 1833.
  57. Guan Q-X, Li Y-F, Zhao C-L. Morphological and phylogenetic evidence for recognition of two new species of Hyphoderma (Basidiomycota) from Southern China, with a key to all Chinese Hyphoderma. MycoKeys. 2021;83:145-160. doi: 10.3897/mycokeys.83.69909.
  58. Guan Q-X, Zhao C-L. Taxonomy and phylogeny of the wood-inhabiting fungal genus Hyphoderma with descriptions of three new species from East Asia. J Fungi. 2021;7(4):308. doi: 10.3390/jof7040308.
  59. Larsson K-H. Re-thinking the classification of corticioid fungi. Mycol Res. 2007;111(Pt 9):1040-1063. doi: 10.1016/j.mycres.2007.08.001.
  60. Justo A, Miettinen O, Floudas D, et al. A revised family-level classification of the Polyporales (Basidiomycota). Fungal Biol. 2017;121(9):798-824. doi: 10.1016/j.funbio.2017.05.010.
  61. Larsson KH. Two new species in Hyphoderma. Nord J Bot. 1998;18(1):121-127. doi: 10.1111/j.1756-1051.1998. tb01106.x.
  62. Ma X, Huang R-X, Zhang Y, et al. Hyphoderma fissuratum and H. mopanshanense spp. nov. (Polyporales) from Southern China. Mycoscience. 2021;62(1):36-41. doi: 10.47371/mycosci.2020.08.004.
  63. Hjortstam K, Ryvarden L. A checklist of names in Hyphodontia sensu stricto-sensu lato and Schizopora with new combinations in Lagarobasidium, Lyomyces, Kneiffiella, Schizopora, and Xylodon. Synopsis fungorum. 2009;26:33-55.
  64. Riebesehl J, Langer E. Hyphodontia s.l. (Hymenochaetales, Basidiomycota): 35 new combinations and new keys to all 120 current species. Mycol Progress. 2017;16(6):637-666. doi: 10.1007/s11557-017-1299-8.
  65. Karsten P. Enumeratio Thelephorearum Fr. et Clavariearum Fr. Fennicarum, systemate novo dispositarum. Rev Mycol Toulouse. 1881;3:21-23.
  66. Bernicchia A, Gorjon S. Fungi Europaei 12: Corticiaceae s.l. Alassio: Edizioni Candusso; 2010. p. 731-744.
  67. Eriksson J. Studies in the heterobasidiomycetes and homobasidiomycetes-Aphyllophorales of Muddus National Park in North Sweden. Uppsala: Acta Universitatis Upsaliensis; 1958.
  68. Viner I, Spirin V, Zibarova L, et al. Additions to the taxonomy of Lagarobasidium and Xylodon (Hymenochaetales, Basidiomycota). MycoKeys. 2018;41(41):65-90. doi: 10.3897/mycokeys.41.28987.
  69. Riebesehl J, Yurchenko E, Nakasone KK, et al. Phylogenetic and morphological studies in Xylodon (Hymenochaetales, Basidiomycota) with the addition of four new species. MycoKeys. 2019;47:97-137. doi: 10.3897/mycokeys.47.31130.
  70. Cho Y, Kim JS, Dai Y-C, et al. Taxonomic evaluation of Xylodon (Hymenochaetales, Basidiomycota) in Korea and sequence verification of the corresponding species in GenBank. PeerJ. 2021;9:e12625. doi: 10.7717/peerj.12625.
  71. Luo K-Y, Chen Z-Y, Zhao C-L. Phylogenetic and taxonomic analyses of three new wood-inhabiting fungi of Xylodon (Basidiomycota) in a Forest ecological system. J Fungi. 2022;8(4):405. doi: 10.3390/jof8040405.
  72. Dong J-H, Zhang X-C, Chen J-J, et al. A phylogenetic and taxonomic study on Steccherinum (Polyporales, Basidiomycota): focusing on three new Steccherinum species from Southern China. Front Cell Infect Microbiol. 2022;12:1103579. doi: 10.3389/fcimb.2022.1103579.
  73. Westphalen M, Rajchenberg M, Tomsovsky M, et al. A re-evaluation of Neotropical Junghuhnia s.lat. (Polyporales, Basidiomycota) based on morphological and multigene analyses. Persoonia. 2018;41(1): 130-141. doi: 10.3767/persoonia.2018.41.07.