DOI QR코드

DOI QR Code

Recovery of Barium, Nickel, and Titanium Powders from Waste MLCC

  • Haein Shin (Department of Energy Engineering, Dankook University) ;
  • Kun-Jae Lee (Department of Energy Engineering, Dankook University)
  • Received : 2024.07.25
  • Accepted : 2024.08.24
  • Published : 2024.10.28

Abstract

The development of the electronics industry has led to an increased demand for the manufacture of MLCC (Multilayer Ceramic Capacitors), which in turn is expected to result in a rise in MLCC waste. The MLCC contains various metals, notably barium, titanium, and nickel, whose disposal is anticipated to increase correspondingly. Recently, recycling technologies for electronic waste have garnered attention as they address waste management and raw material supply challenges. This paper investigates the recovery of barium, nickel, and titanium from the MLCC by a hydrometallurgical process. Using citric acid, which is an organic acid, the metal inside the MLCC was leached. Additionally, metal materials were recovered through precipitation and complexing processes. As a result, barium and titanium were recovered from the leachate of the waste MLCC, and 93% of the nickel-based powder was recovered. Furthermore, the optimal recovery process conditions for recycling these metal elements were investigated.

Keywords

Acknowledgement

This work was supported by Korea Environment Industry & Technology Institute (KEITI) through R&D Project of recycling development for future waste resources program, funded by Korea Ministry of Environment (MOE) (2022003500003) and the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No. 2022R1A2C1007909).

References

  1. M. A. Rabah, F. E. Farghaly and M. A. Abd-El: Motaleb: Waste Manag., 28 (2008) 1159.
  2. H. L. An, L. S. Kang and C. G. Lee: Resources Recycling, 26 (2017) 4.
  3. K. T. Hong, T. H. Lee, J. M. Suh, S. H. Yoon and H. W. Jang: J. Mater. Chem. C., 7 (2019) 9782.
  4. Y. Kim, J. C. Lee, B. S. Ki, M. S. Kim and J. K. Jeong: Hydrometallurgy, 86 (2007) 89.
  5. Y. Liu, Q. Song, L. Zhang and Z. Xu: J Clean Prod., 290 (2021) 125650.
  6. M. D. Najafi, S. K. Eshkalak, B. Amiri, H. R. Naderi, E. Kowsari, A. Chinnappan and S. Ramakrishna: Mater Today Chem., 23 (2022) 100633.
  7. Y. G. Kim: J. Powder Mater., 11 (2004) 265.
  8. T. P. Mokoena, H. C. Swart and D. E. Motaung: J. Alloys, 805 (2019) 267.
  9. H. C. Jung, G. H. Kim, H. S. Hong and D. W. Kim: J. Powder Mater., 17 (2010) 175.
  10. X. Chen, Y. Chen, T. Zhou, D. Liu, H. Gu and S. Fan: Waste Manage, 38 (2015) 349.
  11. R. Golmohammadzadeh, F. Faraji and F. Rashchi: Resour. Conserv. Recycl. Adv., 136 (2018) 418.
  12. L. Li, J. B. Dunn, X. X. Zhang, L. Gaines, R. J. Chen, F. Wu and K. Amine: J. Power Sources, 233 (2013) 180.
  13. B. Niu and Z. Xu: Sustainable Mater. Technol., 21 (2019) e00101.
  14. D. Fontana, M. Pietrantonio, S. Pucciarmati, GN. Torelli, C. Bonomi and F Masi: J. Mater. Cycles Waste Manage, 20 (2018) 1199.
  15. G. Prabaharan, SP. Barik and B. Kumar: Waste Manage, 52 (2016) 302.
  16. K. Hong, T. H. Lee, J. M. Suh, S. H. Yoon and H. W. Jang: J. Mater. Chem. C. Mater., 7 (2019) 9782.
  17. S. S. Tripathy and A. M. Raichur: J. Exp. Nanosci., 6 (2011) 127.
  18. W. Astuti, T. Hirajima, K. Sasaki and N. Okibe: Miner Eng., 85 (2016) 1.
  19. W. Jonglertjunya and T. Rubcumintara: Asia Pac. J. Chem. Eng., 8 (2013) 323.
  20. A. A. Oncul, K. Sundmacher, A. Seidel-Morgenstern and D. Thevenin: Chem Eng Sci., 61 (2006) 652.
  21. J. Y. Park, D. W. Jeong, K. T. Park, T. S. Kim, Y. H. Choa and B. S. Kim: J. Nanosci. Nanotechnol., 16 (2016) 10630.
  22. M. Khalil, J. Yu, N. Liu and R. L. Lee: J. Nanopart Res., 16 (2014) 1.
  23. J. Kontrec, N. Tomasic, N. Matijakovic Mlinaric, D. Kralj and B. Njegic Dzakula: Crystals, 11 (2021) 1075.
  24. S. Surianti, K. C. Wanta, W. Astuti, F. R. Mufakhir, I. Perdana and P. H. Petrus: J. Min. Sci., 58 (2022) 476.
  25. P. W. M Jacobs and A. R. T. Kureishy: Phys Chem Chem Phys., 58 (1962) 551.
  26. K. K. Sahu, R. K. Sahoo, L. D. Beshra and M. Mohapatra: Ionics, 27 (2021) 819.
  27. Y. Kang, J. Park and K. J. Lee: J. Adhes. Sci. Technol., 31 (2017) 2571.
  28. K. Tomita, V. Petrykin, M. Kobayashi, M. Shiro, M. Yoshimura and M. Kakihana: Angew. Chem. Int. Ed. Engl., 45 (2006) 2378.
  29. D. A. H. Hanaor and C. C. Sorrell: J. Mater. Sci., 46 (2011) 855.
  30. Z. Xiong, H. Wu, L. Zhang, Y. Gu and X. S. Zhao: J. Mater. Chem. A. Mater. A, 2 (2014) 9291.