References
- 강한바다, 이재우, "가중치 VAE 오버샘플링(W-VAE)을 이용한 보안데이터셋 샘플링 기법 연구", 한국정보통신학회논문지, 제26권, 제12호, 2022, 872-879.
- 김상광, 김선경, "빅데이터 활용에 영향을 미치는 개인정보 규제요인과 데이터 결합요인의 탐색", 정보보호학회논문지, 제30권 제2호, 2020, 287-304.
- 김슬기, 전용주, 김태영, "합성 데이터셋생성기법을 활용한 초.중등 인공지능 교육용 데이터셋 개발과 효용성 분석", 컴퓨터교육학회 논문지, 제25권, 제3호, 2022, 9-21.
- 김태민, 김재곤, "치아 보철물 디자인을 위한 이미지대 이미지 변환 GAN 모델", 한국IT서비스학회지, 제22권, 제5호, 2023, 87-98.
- 금융위원회, "금융데이터 규제혁신 T/F 1차 회의 개최", 보도자료, 2023.5.18.
- 배재권, 이승연, 서희진, "인공지능기법을 이용한 온라인 P2P 대출거래의 채무불이행 예측에 관한 실증연구", 한국전자거래학회지, 제23권, 제3호, 2018, 207-224.
- 정주은, 김한준, "혼합형 테이블 데이터를 위한 딥러닝기반 데이터 증강 기법", 한국전자거래학회지, 제28권 제4호, 2023, 1-22.
- Abadie, A., "Using synthetic controls: Feasibility, data requirements, and methodological aspects", Journal of Economic Literature, Vol.59, No.2, 2021. 391-425.
- An, C., J. Sun, Y. Wang, and Q. Wei, "A K-means improved CTGAN oversampling method for data imbalance problem", International Conference on Software Quality, Reliability and Security, 2021.
- Assefa, S.A., M. Mahfouz, R.E. Tillman, P. Reddy, and M. Veloso, "Generating synthetic data in finance: opportunities, challenges and pitfalls", Proceedings of the First ACM International Conference on AI in Finance, No.44, 2020, 1-8.
- Bhanot, K., J.S. Erickson, I. Guyon, and K.P. Bennet, "The problem of fairness in synthetic healthcare data", Entropy, Vol.23, No.9, 2021, 1165.
- Bourou, S., A.E. Saer, T-H. Velivassaki, A. Voulkidis, and T. Zahariadis, "A review of tabular data synthesis using GANs on an IDS dataset", Information, Vol.12, No.9, 2021, 375.
- Cao, L., "AI in finance: Challenges, techniques, and opportunities", ACM Computing Surveys, Vol.55, No.64, 2022, 1-38.
- Chawla, N.V., K.W. Bowyer, L.O. Hall, and W.P. Kegelmeyer, "SMOTE: Synthetic minority over-sampling technique", Journal of Artificial Intelligence Research, Vol.16, 2002.
- Cheon, M.J., D.H. Lee, J.W. Park, H.J. Choi, J.S. Lee, and O. Lee, "Ctgan vs tgan? Which one is more suitable for generating synthetic eeg data", Journal of Theoretical and Applied Information Technology, Vol.99, No.10, 2021.
- Emam, E.K., L. Mosquera, and R. Hoptroff, Practical synthetic data generation: Balancing privacy and the broad availability of data, O'Reilly Media, 2020.
- Fallahian, M., M. Dorodchi, and K. Kreth, "GAN-based tabular data generator for constructing synopsis in approximate query processing: Challenges and solutions", Machine Learning & Knowledge Extraction, Vol.6, No.1, 2024, 171-198.
- Goodfellow, I., J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, "Generative adversarial networks", Communications of the ACM, Vol.64, No.11, 2020, 139-144.
- Habibi, O., M. Chemmakha, and M. Lazaar, "Imbalanced tabular data modelization using CTGAN and machine learning to improve IoT Botnet attacks detection", Engineering Applications of Artificial Intelligence, Vol.118, 2023, 105669.
- Hernadez, M., G. Epelde, A. Alberdi, R. Cilla, and D. Rankin, "Synthetic tabular data evaluation in the health domain covering resemblance, utility, and privacy dimensions", Methods of Information in Medicine, Vol.62, No.1, 2023, 19-38.
- Goodfellow, I., "NIPS 2016 Tutorial: Generative Adversarial Networks", arXiv:1701.00160, 2016.
- Reiter, J.P., "Releasing multiply imputed, synthetic public use microdata: An illustration and empiri-cal study", Journal of the Royal Statistical Society: Series A (Statistics in Society), Vol.168, No.1, 2005, 185-205.
- Jabbar, A., X. Li, and B. Omar, "A survey on generative adversarial networks: Variants, applications, and training", ACM Computing Surveys, Vol.54, No.157, 2021, 1-49.
- Park, J.H., "Improving fashion style classification accuracy using VAE in class imbalance problem", The Journal of Korean Institute of Information Technology, Vol.19, No.2, 2021, 1-10.
- Jordon, J., J. Yoon, and M. van der Schaar, "Pate-gan: Generating synthetic data with differential privacy guarantees", In International Conference on Learning Representations, 2019.
- Kingma, D.P. and M. Welling, "Auto-encoding variational bayes," arXiv:1312.6114v10, 2013.
- Kamthe, S., S. Assefa, and M. Deisenroth, "Copula flows for synthetic data generation", Machine Learning (stat.ML); Machine Learning (cs.LG); Applications (stat.AP), 2021.
- Lee, J., J. Hyeong, J. Jeon, N. Park, and J. Cho, "Invertible tabular GANs: Killing two birds with one stone for tabular data synthesis", Part of Advances in Neural Information Processing Systems, 2021.
- Li, T. and N. Li, "On the tradeoff between privacy and utility in data publishing", Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, 2009, 517-526.
- Majeed, A. and S.O. Hwang, "CTGAN-MOS: Conditional generative adversarial network based minority-class-augmented oversampling scheme for imbalanced problems", Journals & Magazines, Vol.11, No.9, 2023.
- Meyer, D., T. Nagler, and R.J. Hogan, "Copula-based synthetic data augmentation for machinelearning emulators", Geoscientific Model Development, Vol.14, No.14, 2021, 5205-5215.
- Mukherjee, M. and M. Khushi, "SMOTE-ENC: A novel SMOTE-Based method to generate synthetic data for nominal and continuous features", Applied System Innovation, Vol.4, No.1, 2021, 18.
- Salman, H.K., H. Munawar, and B. Nick, "Adversarial training of variational autoencoders for high fidelity image generation", IEEE Winter Conference on Applications of Computer Vision, 2018.
- Sarker, I.H., M.H. Furhad, and R. Nowrozy, "AIdriven cybersecurity: An overview, security intelligence modeling and research directions", SN Computer Science, Vo1.2, No.173, 2021.
- Sun, Y., A. Cuesta-Infante, and K. Veeramachaneni, "Learning vine copula models for synthetic data generation", Proceedings of the AAAI Conference on Artificial Intelligence, Vol.33, No.1, 2019.
- Xu, L. and K. Veeramachaneni, "Synthesizing tabular data using generative adversarial networks", Machine Learning, 2018.
- Xu, L., M. Skoularidou, A. Cuesta-Infante, and K. Veeramachaneni, " Modeling tabular data using conditional GAN", Advances in Neural Information Processing Systems, 2019.
- Yonghao, G. and W. Weiming, "A quantifying method for trade-off between privacy and utility", IET International Conference on Information and Communications Technologies, 2013.
- Yoo, S. and N. Park, "Synthetic data generation for individual credit data using CART", The Journal of the Korean Official Statistics, Vol. 25, No.1, 2020, 1-30.
- Yue, Y., Y. Li, and Z. Wu, "Synthetic data approach for classification and regression", IEEE 29th International Conference on Applicationspecific Systems, Architectures and Processors, 2018.