참고문헌
- Abbasi, S., Ardakani, A. and Yakhchalian, M. (2021), "The effect of pile cap stiffness on the seismic response of soil-pile-structure systems under near-fault ground motions", Earthq. Struct., 20(1), 87-96. https://doi.org/10.12989/eas.2021.20.1.087.
- Agibayeva, A., Lee, D., Ju, H., Zhang, D. and Kim, J. (2021), "Application of steel-concrete composite pile foundation system as energy storage medium", Struct. Eng. Mech., 77(6), 753-763. http://doi.org/10.12989/sem.2021.77.6.753.
- Attah, I.C. and Etim, R.K. (2020), "Experimental investigation on the effects of elevated temperature on geotechnical behaviour of tropical residual soils", SN Appl. Sci., 2, 370. https://doi.org/10.1007/s42452-020-2149-x.
- Bao, Z., Li, Y., Feng, T., Cui, H. and Chen, X. (2020), "Investigation on thermo-mechanical behavior of reinforced concrete energy pile with large cross-section in saturated sandy soil by model experiments", Undergr. Space, 5(3), 229-241. https://doi.org/10.1016/j.undsp.2019.03.009.
- Batini, N., Loria, A.F.R., Conti, P., Testi, D., Grassi, W. and Laloui, L. (2015), "Energy and geotechnical behaviour of energy piles for different design solutions", Appl. Therm. Eng., 86, 199-213. https://doi.org/10.1016/j.applthermaleng.2015.04.050.
- Campanella, R.G. and Mitchell, J.K. (1968), "Influence of temperature variations on soil behavior", J. Soil Mech. Found. Div., Proc. Am. Soc. Civil Eng., 94(3), 709-734. https://doi.org/10.1061/JSFEAQ.0001136.
- Chen, Z., Zhu, H., Yan, Z., Zhao, L., Shen, Y. and Misra, A. (2016), "Experimental study on physical properties of soft soil after high temperature exposure", Eng. Geol., 204, 14-22. http://doi.org/10.1016/j.enggeo.2016.01.014.
- Ebadi-Jamkhaneh, M. and Kontoni, D.P.N. (2024), "Dynamic response of offshore wind turbine with a new monopile foundation under different lateral and seismic loadings", Shock Vib., 2024, 2329389. https://doi.org/10.1155/2024/2329389.
- Ebadi-Jamkhaneh, M., Homaioon-Ebrahimi, A., Kontoni, D.P.N. and Shokri-Amiri, M. (2021), "Numerical FEM assessment of soil-pile system in liquefiable soil under earthquake loading including soil-pile interaction", Geomech. Eng., 27(5), 465-479. https://doi.org/10.12989/gae.2021.27.5.465.
- Elzeiny R., Suleiman, M.T., Abu Qamar, M., Xiao, S. and Al-Khawaja, M. (2018), "Axial pull-out response of a small-scale concrete pile subjected to cyclic thermal loading in sand", Proceedings of the International Foundation Congress and Equipment Expo 2018 (IFCEE 2018), Orlando, Florida, March.
- Fadejev, J., Simson, R., Kurnitski, J. and Haghighat, F. (2017), "A review on energy piles design, sizing and modelling", Energy, 122, 390-407. https://doi.org/10.1016/j.energy.2017.01.097.
- Faghirnejad, S., Kontoni, D.P.N. and Ghasemi, M.R. (2024), "Performance-based optimization of 2D reinforced concrete wall-frames using pushover analysis and ABC optimization algorithm", Earthq. Struct., 27(4), 285-302. https://doi.org/10.12989/eas.2024.27.4.285.
- Faizal, M., Bouazza, A., McCartney, J.S. and Haberfield, C. (2018), "Axial and radial thermal responses of energy pile under six storey residential building", Can. Geotech. J., 56, 1019-1033. http://doi.org/10.1139/cgj-2018-0246.
- Farghaly, A.A. and Kontoni, D.P.N. (2022), "Mitigation of seismic pounding between RC twin high-rise buildings with piled raft foundation considering SSI", Earthq. Struct., 22(6), 625-635. https://doi.org/10.12989/eas.2022.22.6.625.
- Farghaly, A.A. and Kontoni, D.P.N. (2023), "Mitigation of seismic pounding between two L-shape in plan high-rise buildings considering SSI effect", Couple. Syst. Mech., 12(3), 277-295. https://doi.org/10.12989/csm.2023.12.3.277.
- Heidari, B., Garakani, A.G., Jozani, S.M. and Tari, P.H. (2022), "Energy piles under lateral loading: Analytical and numerical investigations", Renew. Energy, 182, 172-191. https://doi.org/10.1016/j.renene.2021.09.125.
- Hoseinimighani, H. and Szendefy, J. (2019), "The effect of temperature on soil-concrete interface", 5th Kezdi Conference 2019, Budapest, Hungary, May.
- Huang, X., Wu, Y., Peng, H., Hao, Y. and Lu, C. (2018), "Thermomechanical behavior of energy pile embedded in sandy soil", Math. Prob. Eng., 2018, 5341642. https://doi.org/10.1155/2018/5341642.
- Kontoni, D.P.N. and Farghaly, A.A. (2019a), "Mitigation of the seismic response of a cable-stayed bridge with soil-structure-interaction effect using tuned mass dampers", Struct. Eng. Mech., 69(6), 699-712. https://doi.org/10.12989/sem.2019.69.6.699.
- Kontoni, D.P.N. and Farghaly, A.A. (2019b), "The effect of base isolation and tuned mass dampers on the seismic response of RC high-rise buildings considering soil-structure interaction", Earthq. Struct., 17(4), 425-434. https://doi.org/10.12989/eas.2019.17.4.425.
- Kontoni, D.P.N. and Farghaly, A.A. (2020), "TMD effectiveness for steel high-rise building subjected to wind or earthquake including soil-structure interaction", Wind Struct., 30(4), 423-432. https://doi.org/10.12989/was.2020.30.4.423.
- Kontoni, D.P.N. and Farghaly, A.A. (2023), "Enhancing the earthquake resistance of RC and steel high-rise buildings by bracings, shear walls and TMDs considering SSI", Asia. J. Civil Eng., 24, 2595-2608. https://doi.org/10.1007/s42107-023-00666-6.
- Kontoni, D.P.N. and Farghaly, A.A. (2024a), "Seismic control of T-shape in plan steel high-rise buildings with SSI effect using tuned mass dampers", Asia. J. Civil Eng., 25, 1725-1739. https://doi.org/10.1007/s42107-023-00873-1.
- Kontoni, D.P.N. and Farghaly, A.A. (2024b), "Assessing seismic mitigation schemes of tuned mass dampers for monopile offshore wind turbine including pile-soil-structure interaction", Asia. J. Civil Eng., 25, 1773-1799. https://doi.org/10.1007/s42107-023-00877-x.
- Kontoni, D.P.N. and Farghaly, A.A. (2024c), "Seismic control of vertically and horizontally irregular steel high-rise buildings by tuned mass dampers including SSI", Asia. J. Civil Eng., 25, 1995-2014. https://doi.org/10.1007/s42107-023-00890-0.
- Laloui, L. and Rotta Loria, A.F. (2020), Analysis and Design of Energy Geostructures-Theoretical Essentials and Practical Application, Academic Press-an imprint of Elsevier, London, UK, San Diego, CA, USA, Cambridge, MA, USA & Kidlington, Oxford, UK.
- Maghsoodi, S., Cuisinier, O. and Masrouri, F. (2019), "Thermal effects on the mechanical behaviour of the soil-structure interface", Can. Geotech. J., 57(1), 32-47. https://doi.org/10.1139/cgj-2018-0583.
- Mitchell, J.K. (1969), "Temperatures effects on the engineering properties and behavior of soils", Proceedings of an International Conference, Washington, D.C., January.
- Miyamura, T., Tanaka, S. and Hori, M. (2016), "Large-scale seismic response analysis of a super-high-rise-building fully considering the soil-structure interaction using a high-fidelity 3D solid element model", J. Earthq. Tsunami, 10(5), 1640014. https://doi.org/10.1142/S1793431116400145.
- Mohamad, Z., Fardoun, F. and Meftah, F. (2021), "A review on energy piles design, evaluation, and optimization", J. Clean. Prod., 292, 125802. https://doi.org/10.1016/j.jclepro.2021.125802.
- Narsilio, G.A., Bidarmaghz, A. and Colls, S. (2014), "Geothermal energy: Introducing an emerging technology", Proceedings of the International Conference on Advances in Civil Engineering for Sustainable Development (ACESD 2014), Nakhon Ratchasima, Thailand, August.
- Ng, C.W.W., Shi, C., Gunawan, A. and Laloui, L. (2014), "Centrifuge modelling of energy piles subjected to heating and cooling cycles in clay", Geotechnique Lett., 4, 310-316. https://doi.org/10.1680/geolett.14.00063.
- Owoyemi, O.O. and Afolagboye, L.O. (2020), "Effect of cyclic heating on some engineering characteristics of some soils from Ilorin, Nigeria", SN Appl. Sci., 2, 1987. https://doi.org/10.1007/s42452-020-03765-0.
- Pan, H., Li, C. and Tian, L. (2020), "Seismic response and failure analyses of pile-supported transmission towers on layered ground", Struct. Eng. Mech., 76(2), 223-237. https://doi.org/10.12989/sem.2020.76.2.223.
- Sadeghi, H. and Singh, R.M. (2023), "Driven precast concrete geothermal energy piles: Current state of knowledge", Build. Environ., 228, 109790. https://doi.org/10.1016/j.buildenv.2022.109790.
- Saggu, R. (2022), "Cyclic pile-soil interaction effects on load-displacement behavior of thermal pile groups in sand", Geotech. Geol. Eng., 40, 647-661. https://doi.org/10.1007/s10706-021-01912-x.
- Saha, R., Dutta, S.C. and Haldar, S. (2015), "Effect of raft and pile stiffness on seismic response of soil-piled raft-structure system", Struct. Eng. Mech., 55(1), 161-189. https://doi.org/10.12989/sem.2015.55.1.161.
- SAP2000® Version 25 (2023), Integrated Software for Structural Analysis and Design, Computers and Structures, Inc., Walnut Creek, CA and New York, NY, USA.
- Sarkar, R. and Maheshwari, B.K. (2012), "Effect of soil nonlinearity and liquefaction on dynamic stiffness of pile groups", Int. J. Geotech. Eng., 6, 319-329. https://doi.org/10.3328/IJGE.2012.06.03.319-329.
- Stromblad, N. (2014), "Modeling of soil and structure interaction subsea", Master's Thesis, Department of Applied Mechanics, Division of Material and Computational Mechanics, Chalmers University of Technology, Goteborg, Sweden.
- Tulebekova, S., Zhang, D., Lee, D., Kim, J., Barissov, T. and Tsoy, V. (2019), "Nonlinear responses of energy storage pile foundations with fiber reinforced concrete", Struct. Eng. Mech., 71(4), 363-375. http://doi.org/10.12989/sem.2019.71.4.363.
- Xiao, S., Suleiman, M.T. and Al-Khawaja, M. (2019), "Investigation of effects of temperature cycles on soil-concrete interface behavior using direct shear tests", Soil. Found., 59, 1213-1227. https://doi.org/10.1016/j.sandf.2019.04.009.
- Yavari, N., Tang, A.M., Pereira, J.M. and Hassen, G. (2016), "Effect of temperature on the shear strength of soils and the soil-structure interface", Can. Geotech. J., 53(7), 1047-1058. https://doi.org/10.1139/cgj-2015-0355.
- Yazdani, S., Helwany, S. and Olgun, C.G. (2021), "The mechanisms underlying long-term shaft resistance enhancement of energy pile in clays", Can. Geotech. J., 58(11), 1640-1653. http://doi.org/10.1139/cgj-2019-0236.
- Zhang, L., Han, H., Li, W., Guo, K., Yuan, M. and Liu, Z. (2024), "A critical assessment and summary on the low carbon energy pile technologies based on the life-cycle perspective: Challenges and prospects", Appl. Therm. Eng., 243, 122605. https://doi.org/10.1016/j.applthermaleng.2024.122605.
- Zhao, R. (2020), "Thermally-induced ratcheting behaviour of laterally-loaded reinforced concrete energy piles in sand", Ph.D. Dissertation, University of Dundee, Scotland, UK.
- Zhu, Q., Jin, Y., Shang, X. and Chen, T. (2019), "A 1D model considering the combined effect of strain-rate and temperature for soft soil", Geomech. Eng., 18(2), 133-140. http://doi.org/10.12989/gae.2019.18.2.133.