DOI QR코드

DOI QR Code

Investigation of the effect of energy piles on the seismic response of RC high-rise building with piled raft foundation

  • Denise-Penelope N. Kontoni (Department of Civil Engineering, School of Engineering, University of the Peloponnese) ;
  • Ahmed Abdelraheem Farghaly (Department of Civil and Architectural Constructions, Faculty of Technology and Education, Sohag University)
  • Received : 2024.04.03
  • Accepted : 2024.10.18
  • Published : 2024.10.25

Abstract

Energy piles are green foundations that utilize the ground as a heat source or reservoir to provide renewable energy for buildings. However, the thermal cycles induced by energy piles may affect their structural behavior and interaction with the soil under seismic loading. This paper presents the first comprehensive study of the seismic performance of a high-rise building (HRB) on energy piled raft foundation using numerical modeling and simulation. A three-dimensional finite element model of a 15-story building with energy piles is developed and subjected to four different earthquake scenarios. The results show that the energy piles can reduce the seismic demand of the building in the cooling cycle, but they also increase the soil-structure interaction and pile-soil-pile interaction effects in the heating cycle. This paper also provides some insights for improving the seismic performance of high-rise buildings (HRBs) on energy piled raft foundations by using tuned mass dampers (TMDs) which can contribute to reducing the seismic response of the HRB when the soil is heated in the exchange of heat between the piles and the soil in the hot season.

Keywords

References

  1. Abbasi, S., Ardakani, A. and Yakhchalian, M. (2021), "The effect of pile cap stiffness on the seismic response of soil-pile-structure systems under near-fault ground motions", Earthq. Struct., 20(1), 87-96. https://doi.org/10.12989/eas.2021.20.1.087.
  2. Agibayeva, A., Lee, D., Ju, H., Zhang, D. and Kim, J. (2021), "Application of steel-concrete composite pile foundation system as energy storage medium", Struct. Eng. Mech., 77(6), 753-763. http://doi.org/10.12989/sem.2021.77.6.753.
  3. Attah, I.C. and Etim, R.K. (2020), "Experimental investigation on the effects of elevated temperature on geotechnical behaviour of tropical residual soils", SN Appl. Sci., 2, 370. https://doi.org/10.1007/s42452-020-2149-x.
  4. Bao, Z., Li, Y., Feng, T., Cui, H. and Chen, X. (2020), "Investigation on thermo-mechanical behavior of reinforced concrete energy pile with large cross-section in saturated sandy soil by model experiments", Undergr. Space, 5(3), 229-241. https://doi.org/10.1016/j.undsp.2019.03.009.
  5. Batini, N., Loria, A.F.R., Conti, P., Testi, D., Grassi, W. and Laloui, L. (2015), "Energy and geotechnical behaviour of energy piles for different design solutions", Appl. Therm. Eng., 86, 199-213. https://doi.org/10.1016/j.applthermaleng.2015.04.050.
  6. Campanella, R.G. and Mitchell, J.K. (1968), "Influence of temperature variations on soil behavior", J. Soil Mech. Found. Div., Proc. Am. Soc. Civil Eng., 94(3), 709-734. https://doi.org/10.1061/JSFEAQ.0001136.
  7. Chen, Z., Zhu, H., Yan, Z., Zhao, L., Shen, Y. and Misra, A. (2016), "Experimental study on physical properties of soft soil after high temperature exposure", Eng. Geol., 204, 14-22. http://doi.org/10.1016/j.enggeo.2016.01.014.
  8. Ebadi-Jamkhaneh, M. and Kontoni, D.P.N. (2024), "Dynamic response of offshore wind turbine with a new monopile foundation under different lateral and seismic loadings", Shock Vib., 2024, 2329389. https://doi.org/10.1155/2024/2329389.
  9. Ebadi-Jamkhaneh, M., Homaioon-Ebrahimi, A., Kontoni, D.P.N. and Shokri-Amiri, M. (2021), "Numerical FEM assessment of soil-pile system in liquefiable soil under earthquake loading including soil-pile interaction", Geomech. Eng., 27(5), 465-479. https://doi.org/10.12989/gae.2021.27.5.465.
  10. Elzeiny R., Suleiman, M.T., Abu Qamar, M., Xiao, S. and Al-Khawaja, M. (2018), "Axial pull-out response of a small-scale concrete pile subjected to cyclic thermal loading in sand", Proceedings of the International Foundation Congress and Equipment Expo 2018 (IFCEE 2018), Orlando, Florida, March.
  11. Fadejev, J., Simson, R., Kurnitski, J. and Haghighat, F. (2017), "A review on energy piles design, sizing and modelling", Energy, 122, 390-407. https://doi.org/10.1016/j.energy.2017.01.097.
  12. Faghirnejad, S., Kontoni, D.P.N. and Ghasemi, M.R. (2024), "Performance-based optimization of 2D reinforced concrete wall-frames using pushover analysis and ABC optimization algorithm", Earthq. Struct., 27(4), 285-302. https://doi.org/10.12989/eas.2024.27.4.285.
  13. Faizal, M., Bouazza, A., McCartney, J.S. and Haberfield, C. (2018), "Axial and radial thermal responses of energy pile under six storey residential building", Can. Geotech. J., 56, 1019-1033. http://doi.org/10.1139/cgj-2018-0246.
  14. Farghaly, A.A. and Kontoni, D.P.N. (2022), "Mitigation of seismic pounding between RC twin high-rise buildings with piled raft foundation considering SSI", Earthq. Struct., 22(6), 625-635. https://doi.org/10.12989/eas.2022.22.6.625.
  15. Farghaly, A.A. and Kontoni, D.P.N. (2023), "Mitigation of seismic pounding between two L-shape in plan high-rise buildings considering SSI effect", Couple. Syst. Mech., 12(3), 277-295. https://doi.org/10.12989/csm.2023.12.3.277.
  16. Heidari, B., Garakani, A.G., Jozani, S.M. and Tari, P.H. (2022), "Energy piles under lateral loading: Analytical and numerical investigations", Renew. Energy, 182, 172-191. https://doi.org/10.1016/j.renene.2021.09.125.
  17. Hoseinimighani, H. and Szendefy, J. (2019), "The effect of temperature on soil-concrete interface", 5th Kezdi Conference 2019, Budapest, Hungary, May.
  18. Huang, X., Wu, Y., Peng, H., Hao, Y. and Lu, C. (2018), "Thermomechanical behavior of energy pile embedded in sandy soil", Math. Prob. Eng., 2018, 5341642. https://doi.org/10.1155/2018/5341642.
  19. Kontoni, D.P.N. and Farghaly, A.A. (2019a), "Mitigation of the seismic response of a cable-stayed bridge with soil-structure-interaction effect using tuned mass dampers", Struct. Eng. Mech., 69(6), 699-712. https://doi.org/10.12989/sem.2019.69.6.699.
  20. Kontoni, D.P.N. and Farghaly, A.A. (2019b), "The effect of base isolation and tuned mass dampers on the seismic response of RC high-rise buildings considering soil-structure interaction", Earthq. Struct., 17(4), 425-434. https://doi.org/10.12989/eas.2019.17.4.425.
  21. Kontoni, D.P.N. and Farghaly, A.A. (2020), "TMD effectiveness for steel high-rise building subjected to wind or earthquake including soil-structure interaction", Wind Struct., 30(4), 423-432. https://doi.org/10.12989/was.2020.30.4.423.
  22. Kontoni, D.P.N. and Farghaly, A.A. (2023), "Enhancing the earthquake resistance of RC and steel high-rise buildings by bracings, shear walls and TMDs considering SSI", Asia. J. Civil Eng., 24, 2595-2608. https://doi.org/10.1007/s42107-023-00666-6.
  23. Kontoni, D.P.N. and Farghaly, A.A. (2024a), "Seismic control of T-shape in plan steel high-rise buildings with SSI effect using tuned mass dampers", Asia. J. Civil Eng., 25, 1725-1739. https://doi.org/10.1007/s42107-023-00873-1.
  24. Kontoni, D.P.N. and Farghaly, A.A. (2024b), "Assessing seismic mitigation schemes of tuned mass dampers for monopile offshore wind turbine including pile-soil-structure interaction", Asia. J. Civil Eng., 25, 1773-1799. https://doi.org/10.1007/s42107-023-00877-x.
  25. Kontoni, D.P.N. and Farghaly, A.A. (2024c), "Seismic control of vertically and horizontally irregular steel high-rise buildings by tuned mass dampers including SSI", Asia. J. Civil Eng., 25, 1995-2014. https://doi.org/10.1007/s42107-023-00890-0.
  26. Laloui, L. and Rotta Loria, A.F. (2020), Analysis and Design of Energy Geostructures-Theoretical Essentials and Practical Application, Academic Press-an imprint of Elsevier, London, UK, San Diego, CA, USA, Cambridge, MA, USA & Kidlington, Oxford, UK.
  27. Maghsoodi, S., Cuisinier, O. and Masrouri, F. (2019), "Thermal effects on the mechanical behaviour of the soil-structure interface", Can. Geotech. J., 57(1), 32-47. https://doi.org/10.1139/cgj-2018-0583.
  28. Mitchell, J.K. (1969), "Temperatures effects on the engineering properties and behavior of soils", Proceedings of an International Conference, Washington, D.C., January.
  29. Miyamura, T., Tanaka, S. and Hori, M. (2016), "Large-scale seismic response analysis of a super-high-rise-building fully considering the soil-structure interaction using a high-fidelity 3D solid element model", J. Earthq. Tsunami, 10(5), 1640014. https://doi.org/10.1142/S1793431116400145.
  30. Mohamad, Z., Fardoun, F. and Meftah, F. (2021), "A review on energy piles design, evaluation, and optimization", J. Clean. Prod., 292, 125802. https://doi.org/10.1016/j.jclepro.2021.125802.
  31. Narsilio, G.A., Bidarmaghz, A. and Colls, S. (2014), "Geothermal energy: Introducing an emerging technology", Proceedings of the International Conference on Advances in Civil Engineering for Sustainable Development (ACESD 2014), Nakhon Ratchasima, Thailand, August.
  32. Ng, C.W.W., Shi, C., Gunawan, A. and Laloui, L. (2014), "Centrifuge modelling of energy piles subjected to heating and cooling cycles in clay", Geotechnique Lett., 4, 310-316. https://doi.org/10.1680/geolett.14.00063.
  33. Owoyemi, O.O. and Afolagboye, L.O. (2020), "Effect of cyclic heating on some engineering characteristics of some soils from Ilorin, Nigeria", SN Appl. Sci., 2, 1987. https://doi.org/10.1007/s42452-020-03765-0.
  34. Pan, H., Li, C. and Tian, L. (2020), "Seismic response and failure analyses of pile-supported transmission towers on layered ground", Struct. Eng. Mech., 76(2), 223-237. https://doi.org/10.12989/sem.2020.76.2.223.
  35. Sadeghi, H. and Singh, R.M. (2023), "Driven precast concrete geothermal energy piles: Current state of knowledge", Build. Environ., 228, 109790. https://doi.org/10.1016/j.buildenv.2022.109790.
  36. Saggu, R. (2022), "Cyclic pile-soil interaction effects on load-displacement behavior of thermal pile groups in sand", Geotech. Geol. Eng., 40, 647-661. https://doi.org/10.1007/s10706-021-01912-x.
  37. Saha, R., Dutta, S.C. and Haldar, S. (2015), "Effect of raft and pile stiffness on seismic response of soil-piled raft-structure system", Struct. Eng. Mech., 55(1), 161-189. https://doi.org/10.12989/sem.2015.55.1.161.
  38. SAP2000® Version 25 (2023), Integrated Software for Structural Analysis and Design, Computers and Structures, Inc., Walnut Creek, CA and New York, NY, USA.
  39. Sarkar, R. and Maheshwari, B.K. (2012), "Effect of soil nonlinearity and liquefaction on dynamic stiffness of pile groups", Int. J. Geotech. Eng., 6, 319-329. https://doi.org/10.3328/IJGE.2012.06.03.319-329.
  40. Stromblad, N. (2014), "Modeling of soil and structure interaction subsea", Master's Thesis, Department of Applied Mechanics, Division of Material and Computational Mechanics, Chalmers University of Technology, Goteborg, Sweden.
  41. Tulebekova, S., Zhang, D., Lee, D., Kim, J., Barissov, T. and Tsoy, V. (2019), "Nonlinear responses of energy storage pile foundations with fiber reinforced concrete", Struct. Eng. Mech., 71(4), 363-375. http://doi.org/10.12989/sem.2019.71.4.363.
  42. Xiao, S., Suleiman, M.T. and Al-Khawaja, M. (2019), "Investigation of effects of temperature cycles on soil-concrete interface behavior using direct shear tests", Soil. Found., 59, 1213-1227. https://doi.org/10.1016/j.sandf.2019.04.009.
  43. Yavari, N., Tang, A.M., Pereira, J.M. and Hassen, G. (2016), "Effect of temperature on the shear strength of soils and the soil-structure interface", Can. Geotech. J., 53(7), 1047-1058. https://doi.org/10.1139/cgj-2015-0355.
  44. Yazdani, S., Helwany, S. and Olgun, C.G. (2021), "The mechanisms underlying long-term shaft resistance enhancement of energy pile in clays", Can. Geotech. J., 58(11), 1640-1653. http://doi.org/10.1139/cgj-2019-0236.
  45. Zhang, L., Han, H., Li, W., Guo, K., Yuan, M. and Liu, Z. (2024), "A critical assessment and summary on the low carbon energy pile technologies based on the life-cycle perspective: Challenges and prospects", Appl. Therm. Eng., 243, 122605. https://doi.org/10.1016/j.applthermaleng.2024.122605.
  46. Zhao, R. (2020), "Thermally-induced ratcheting behaviour of laterally-loaded reinforced concrete energy piles in sand", Ph.D. Dissertation, University of Dundee, Scotland, UK.
  47. Zhu, Q., Jin, Y., Shang, X. and Chen, T. (2019), "A 1D model considering the combined effect of strain-rate and temperature for soft soil", Geomech. Eng., 18(2), 133-140. http://doi.org/10.12989/gae.2019.18.2.133.